

Lesson Plans

Course Mastering Algebra I: Course 2

Unit 1 Graphing Quadratic Functions and Equations

Session 3 Solving Quadratic Equations by Graphing

Learning Objectives:

Recognize that if a parabola $Y = ax^2 + bx + c$ has two intercepts, there are two real solutions to the corresponding quadratic equation $ax^2 + bx + c = 0$.

- Discover that the maximum number of real solutions of a quadratic equation is 2.
- Recognize that if a parabola has only one x-intercept, there is only one real solution to the corresponding quadratic equation $ax^2 + bx + c = 0$.
- Recognize that if a parabola does not intersect the *X*-axis, the corresponding quadratic equation $ax^2 + bx + c = 0$ has no real solution.
- **Overview** We examine the flight path of a golf ball, and look at parabolas describing a satellite dish and the suspension cable of the Golden Gate Bridge.

quadratic function
trajectory
standard form of a quadratic equation in one variable
x-intercept of a graph
solution(s) of a quadratic equation in one variable
root of an equation

Teaching Strategies

Prior to the session	 Review the concepts of horizontal and vertical intercepts. Review graphing parabolas whose equations are of the form Y = ax² + bx + c.
At the end of the session	 Discuss the responses to the Student Logbook activity sheet. Examine critical points of a parabola whose equation is Y = ax² + bx + cusing the Tangible Math Function Investigator.
	Have students apply concepts of the tutorial by completing the Your Turn activity sheet.