

Destination Math www.riverdeep.net

Riverdeep grants limited permission to classroom teachers to duplicate the reproducible portions of this publication for classroom use only and for no other purpose.

In the interest of product improvement, information and specifications represented herein are subject to change without notice.

© 1999-2004 Riverdeep Interactive Learning Limited. All rights reserved. Destination Math and Riverdeep are registered trademarks of Riverdeep Interactive Learning Limited.

Table of Contents

Mastering Algebra I: Course II

1 THE REAL NUMBER SYSTEM

1.1 Rational & Irrational Numbers

- Defining the Real Numbers
- Working with Radicals
- The Square Root Function

2 POWERS & POLYNOMIALS

2.1 Polynomial Arithmetic

- Working with Powers
- Adding & Subtracting Polynomial Expressions
- Multiplying Polynomials

2.2 Factoring Polynomials

- Finding Common Factors
- Factoring Quadratic Trinomials
- Special Cases

3 QUADRATIC FUNCTIONS & EQUATIONS

3.1 Graphing Quadratic Functions & Equations

- Graphing Parabolas
- Analyzing Properties of Parabolas
- Solving Quadratic Equations by Graphing

3.2 Solving Quadratic Equations Using Algebra

- Factoring & the Zero Product Theorem
- The Square Root Method & Completing the Square
- The Quadratic Formula

4 ALGEBRAIC EXPRESSIONS & FUNCTIONS

4.1 Radical Equations & Functions

- Solving Radical Equations
- The Inverse of the Square Root Function

4.2 Rational Expressions, Equations, & Functions

- Rational Operations
- Rational Functions
- Rational Equations

5 DESCRIBING DATA

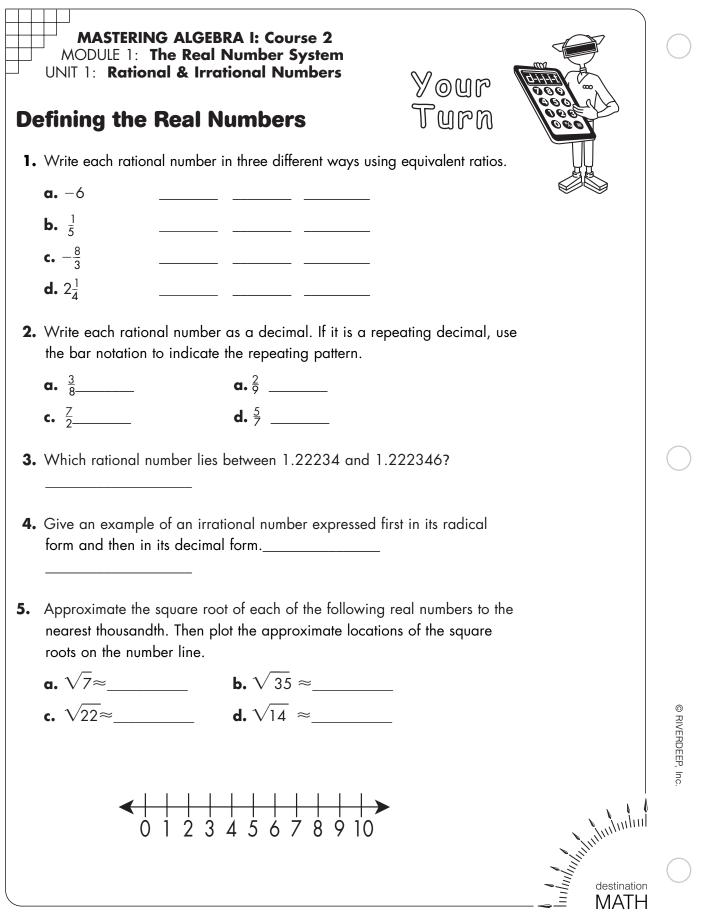
5.1 Graphical Displays

- Stem-&-Leaf Plots & Box Plots
- Scatter Plots & Linear Best-Fit Graphs

Notes to the Teacher

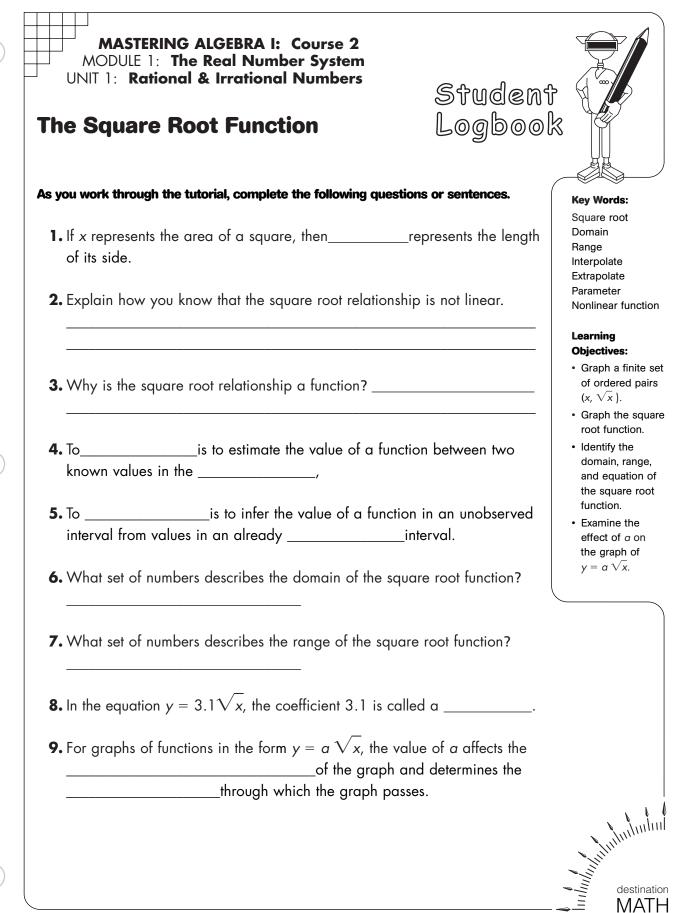
Welcome to *Destination Math.* The student materials in this packet are designed to help students as they progress through the course. These materials, which remain consistent with the philosophy of *Destination Math,* are specifically intended to:

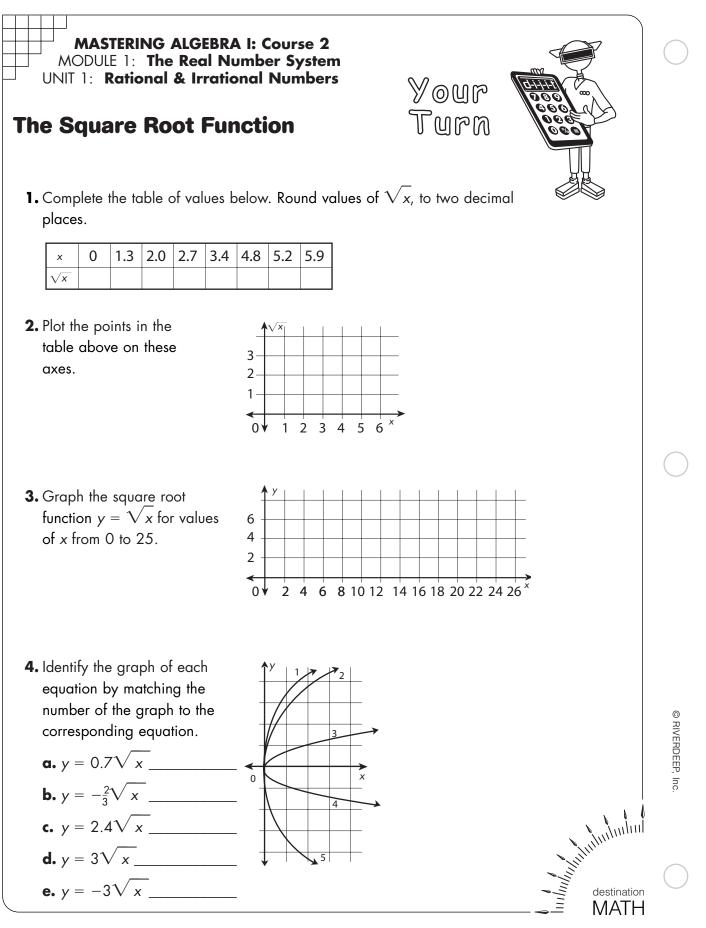
- keep students focused on the instruction.
- provide students an opportunity to take notes, record information from the program, and reflect on the tutorials.
- allow students an opportunity for additional practice of the instruction in each session.
- provide a more open-ended assessment of the concepts in each session.
- use real-world examples and situations that students can identify with.


There is a set of materials designed to support each session. Each set consists of:

- **Student Logbook:** This sheet is designed for students to use while viewing the tutorials. It consists of a one-page worksheet where students can record information from the tutorial, take notes, and reinforce their understanding.
- Your Turn: This is a one-page worksheet that provides additional practice for each session. It is designed for students to complete away from the computer to reinforce the concepts they have studied. It may also serve as a guide to what students need to review to complete their mastery of algebraic concepts.

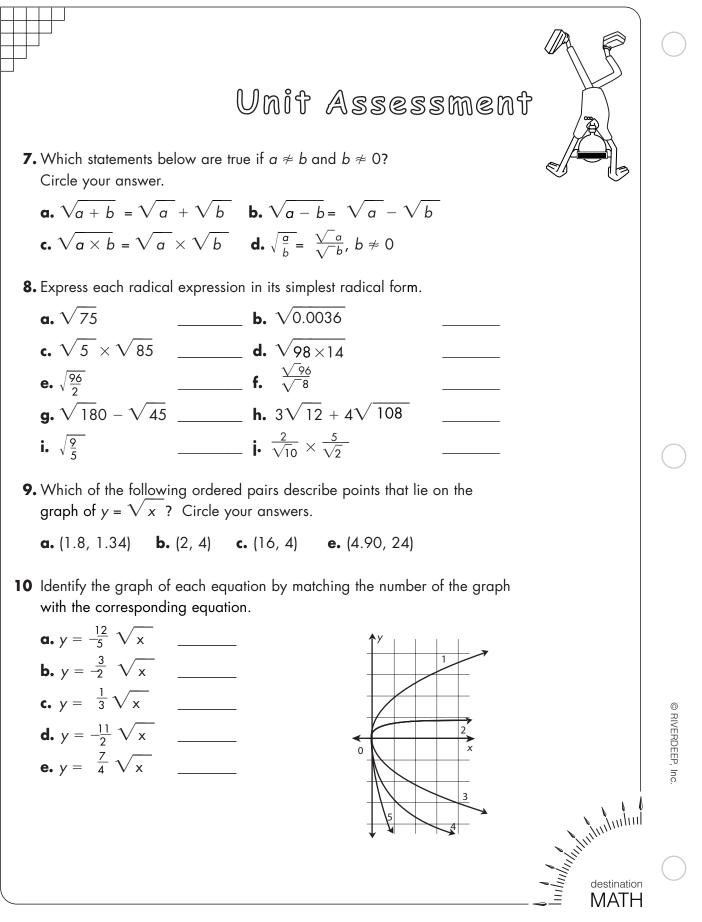
In addition, two sets of materials are provided to cover all the concepts presented in each unit.

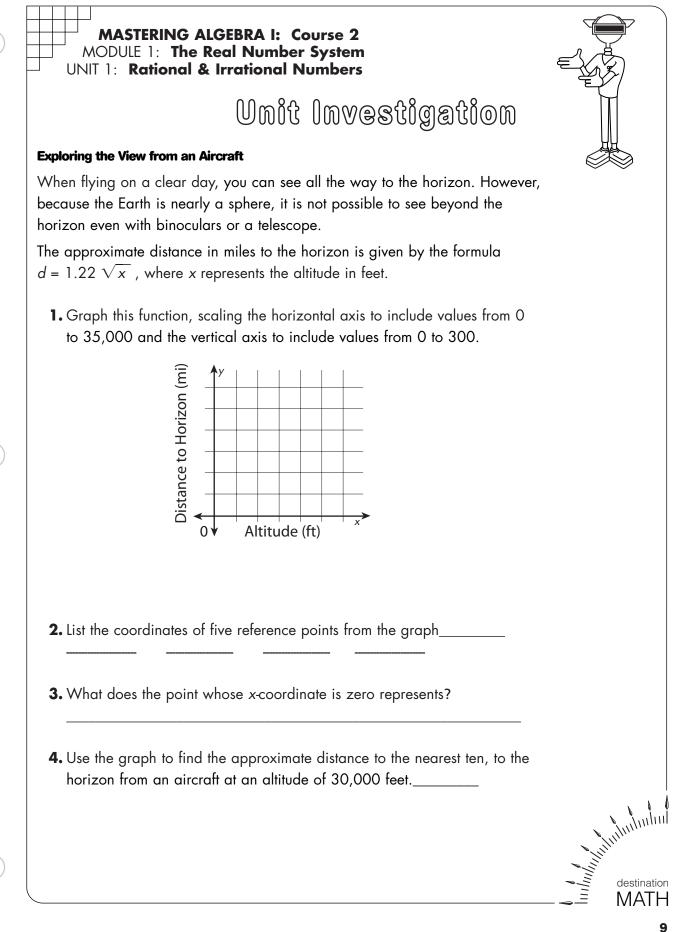

- **Unit Assessment:** The assessment has two pages of problems that cover all skills and concepts in the unit.
- **Unit Investigation:** This two page activity is designed to explore an algebraic concept that serves as he theme for the unit. It can be used as an initial exploration or as a culminating activity.

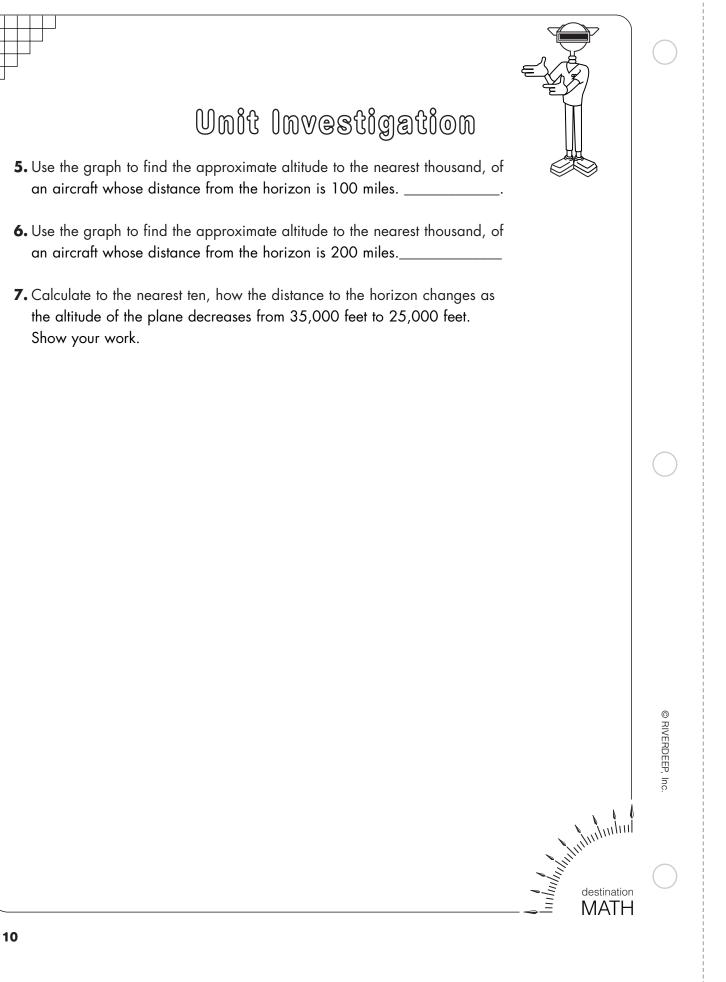

Defining t	he Real Nu	Imbers	L	ogbook	
ls you work throu	igh the tutorial, con	nplete the following		0	
1. A rational n	umber is a numbe	er that is a ratio be	etween two	/	Key Words:
as long as t	he integer in the o	denominator is not		_·	Whole numb
2. A rational n	umber, when exp	ressed as a decim	al, either		Rational num Radical Property of d
		or	·		Irrational nun Real number Root
3. The property	y of density states	that between any	nu	mbers, there	
is always ar	nother	·			Learning Objectives:
4. An irrationa	l number is a nun	nber that cannot b	e expressed a	sa	 Define rational numbers.
	betw	een			 Define irrat numbers
•		al, an irrational nu			 Use the Pythagorea theorem to
		nor			demonstrat existence o
6. The propert	y of density is true	e for both		_and	irrational numbers.
	numbe				 Approximat square root
7. Together, the set of		numbers and irration	onal numbers	make up the	a set of rea numbers ar locate them a number li
8. The radical number.	symbol, $\sqrt{}$, ex	presses the square	<u> </u>	_ of any	
9. The irration	al number $\sqrt{5}$ isform.	expressed exactly	when written	in	

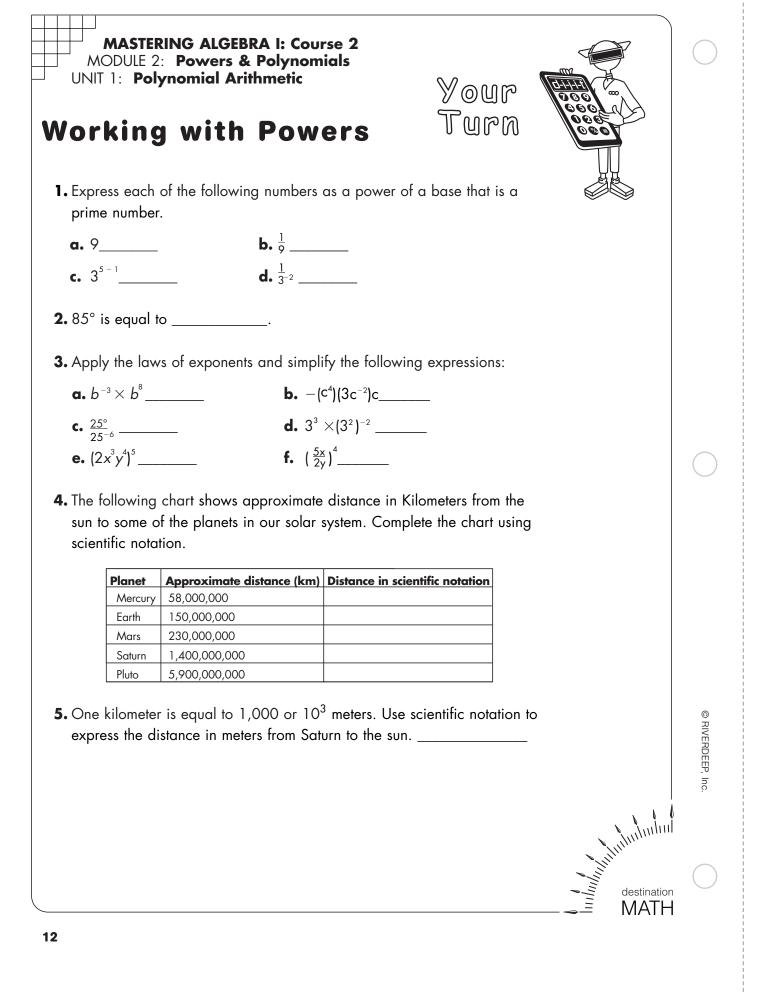
MASTERING ALGEBRA I: Course 2 MODULE 1: The Real Number System UNIT 1: Rational & Irrational Numbers Working with Radicals	Studeni Logbool	
As you work through the tutorial, complete the following quest	tions or sentences.	Key Words:
1. In the formula for the circumference of a circle, $C = $ number π is approximately equal to	2πr, the irrational	Perfect square Principal square ro Radical Radicand Rationalize
2. In the formula for the speed of a tidal wave, $s = 3.1$ can be rational or irrational, depending on the value		Learning Objectives:
3. The expression under a radical symbol is called the	·	 Evaluate the square root of a perfect square. Simplify the
4. List the first five non-zero perfect squares:,		square root of a product. • Simplify the quotient of two radicals.
5. The property of perfect squares states that if $a \ge 0$,	then	Rationalize the denominator of
6. The principal square root of a real number is the		radical expression • Add or subtract radical expressions using expressions using exp
7. Complete the statement \sqrt{a} , $\times \sqrt{b} =$		the distributive property.
8. Expressed in its simplest radical form, $\sqrt{250}$ is writt	ten as	
9. Complete the statement $\sqrt{\frac{a}{b}} =$, where $b \neq$	≉ 0.	
10. To means to convert the under a radical sign to anumber.	of a fraction	
 To add or subtract radicals, express the radicals in _ then combineradicals. 	form and	
		alutululu

MASTERING ALGEBRA I: Course 2 MODULE 1: The Real Number System UNIT 1: Rational & Irrational Numbers Working with Radicals	
1. Use the property of perfect squares to complete each expression.	
a. $\sqrt{81} = \sqrt{(\underline{})^2} = \underline{}$	
b. $\sqrt{\underline{\qquad}} = \sqrt{25^2} = \underline{\qquad}$ c. $\sqrt{\underline{\qquad}} = \sqrt{\underline{(\)}}^2 = 12$	
c. $V_{\underline{\qquad}} = V_{\underline{\qquad}}^2 = 12$	
2. List the first five consecutive perfect squares greater than 100.	
3. Express each radical in simplest form. a. $\sqrt{160}$ b. $5\sqrt{108}$ c. $-\frac{1}{14}\sqrt{490}$ 4. Simplify the product $(3\sqrt{4^3})(-2\sqrt{28})$. 5. Simplify the expression $\frac{\pi}{3}\sqrt{\frac{8}{32}}$ 6. Rationalize each denominator. a. $\sqrt{\frac{1}{6}}$ b. $\sqrt{\frac{3}{11}}$ c. $\sqrt{\frac{2}{7}}$ 7. Simplify these radical expressions by rationalizing the denominators. a. $\frac{8\sqrt{32}}{8\sqrt{50}}$ b. $\frac{\sqrt{1000}}{\sqrt{\frac{8}{8}}}$ c. $\sqrt{\frac{36}{27}}$ 8. Simplify the expression $7\sqrt{2} + 3\sqrt{18}$	
9. The formula $t = \sqrt{\frac{2s}{9.8}}$ gives the time, <i>t</i> , in seconds that it takes an object at rest to fall <i>s</i> meters, where 9.8 is the acceleration due to gravity, in meters per second squared. How many seconds will it take an object to fall 58.8 meters? Write your answer in simplest radical form.	© RIVERDEEP, Inc.
destination MATH	



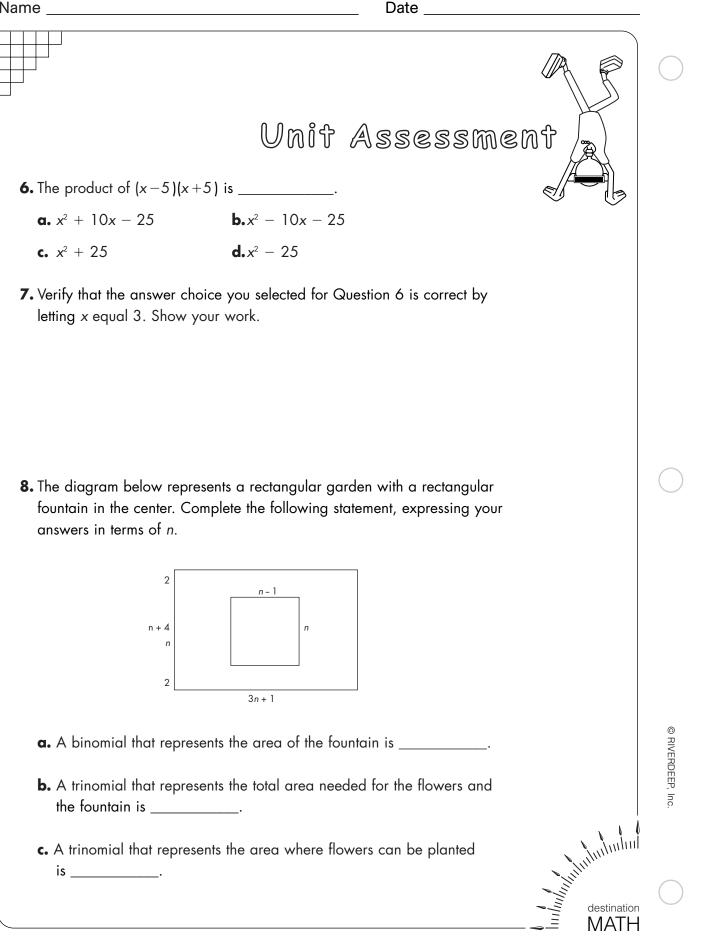


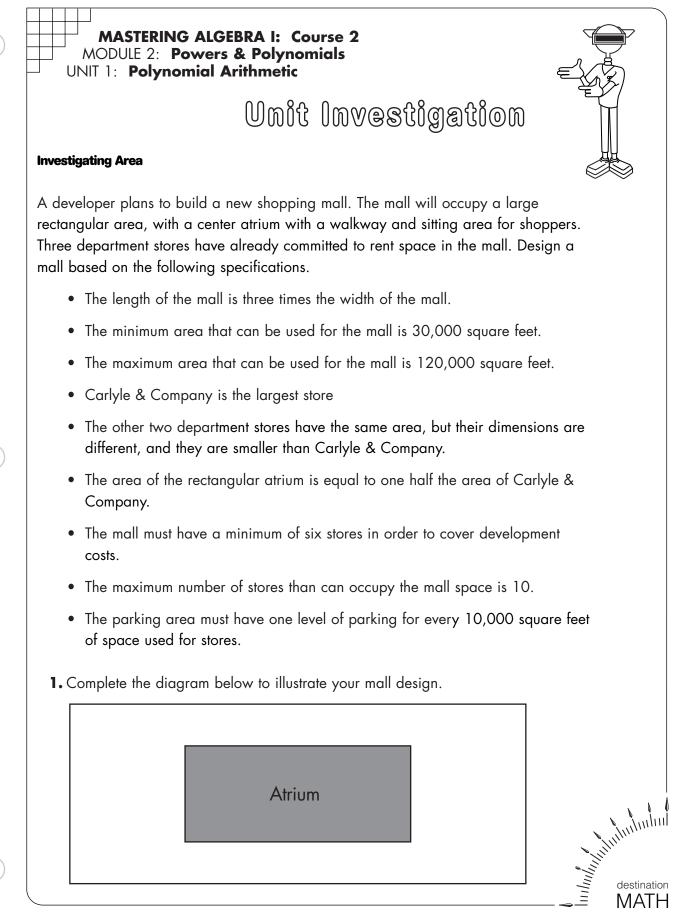

	Unit Assessment	,
•		
7	er as rational or irrational. Justify your answer b. $\frac{12.5}{7}$	đ
	b. ₇ d. 0.552552	
	f. $\sqrt{8}$	
	h. 2.121121112	
2 . Is it always someti	mes, or never true that a rational number can be	
,	ninating decimal?	
3. Is it always someti	mes, or never true that an irrational number can be	
expressed as a nor 4. In a right triangle v length <i>c</i> , the Pythag	nterminating decimal? with sides of length <i>a</i> and <i>b</i> and <i>a</i> hypotenuse of gorean theorem states that $a^2 + b^2 = c^2$. Determine	
expressed as a nor 4. In a right triangle v length <i>c</i> , the Pythag whether the length 4 units and 5 units	nterminating decimal? vith sides of length <i>a</i> and <i>b</i> and <i>a</i> hypotenuse of	
expressed as a nor 4. In a right triangle v length <i>c</i> , the Pythag whether the length 4 units and 5 units Explain your answe	interminating decimal? with sides of length a and b and a hypotenuse of gorean theorem states that $a^2 + b^2 = c^2$. Determine of the hypotenuse of a right triangle whose sides are long is a rational or irrational number	
 expressed as a nor 4. In a right triangle version length c, the Pythage whether the length 4 units and 5 units Explain your answer 5. Each pair of number triangle. Which pair of a second secon	interminating decimal? with sides of length a and b and a hypotenuse of gorean theorem states that $a^2 + b^2 = c^2$. Determine of the hypotenuse of a right triangle whose sides are long is a rational or irrational number	
 expressed as a nor 4. In a right triangle velocities length c, the Pythage whether the length 4 units and 5 units Explain your answer 5. Each pair of number triangle. Which participation has a length for the second s	interminating decimal? with sides of length a and b and a hypotenuse of gorean theorem states that $a^2 + b^2 = c^2$. Determine of the hypotenuse of a right triangle whose sides are long is a rational or irrational number er ers below represents the lengths of the sides of a right irs represent the legs of a right triangle where	
 expressed as a nor 4. In a right triangle velocities in the length <i>c</i>, the Pythage whether the length 4 units and 5 units Explain your answer 5. Each pair of number triangle. Which participation hypotenuse has a length of the length of the	interminating decimal? with sides of length a and b and a hypotenuse of gorean theorem states that $a^2 + b^2 = c^2$. Determine of the hypotenuse of a right triangle whose sides are long is a rational or irrational number er ers below represents the lengths of the sides of a right irs represent the legs of a right triangle where ength that is irrational? Circle your answers.	
 expressed as a nor 4. In a right triangle velocities in the length c, the Pythage whether the length 4 units and 5 units Explain your answer 5. Each pair of number triangle. Which participation hypotenuse has a length a. (12, 5) b. (1) 6. Plot each irrational 	interminating decimal? with sides of length <i>a</i> and <i>b</i> and <i>a</i> hypotenuse of gorean theorem states that $a^2 + b^2 = c^2$. Determine of the hypotenuse of a right triangle whose sides are long is a rational or irrational number er ers below represents the lengths of the sides of a right irs represent the legs of a right triangle where ength that is irrational? Circle your answers. 2, 13) c. (8, 15) d. (2, 4)	


Date _____

	ng with Powers	Logboo	
As you work three	ough the tutorial, complete the following qu	estions or sentences.	Key Words Power
 An used as a 	indicates the number of times factor.	s a is	Base Exponent
2. Any non-z	ero number raised to the zero power ec	auals	Learning Objectives
,	, where <i>a</i> ≉ 0 and <i>n</i> is an integ		Simplify expression containing negative
	o number raised to a power is equal to ber raised to the of that po		exponen • Simplify expression involving
	mple 10 ¹¹ × 10 ² , you can multiply these ach factor has the same	two expressions	product quotient powers. • Simplify expression
	on-zero real number <i>a, a^r × a^s =</i> .	, where <i>r</i> and <i>s</i>	involving power. • Simplify expression
7. For any na are	on-zero real number <i>a, a^r÷ a^s =</i> .	, where <i>r</i> and <i>s</i>	involving power of product quotient.
8. For any no	on-zero real number a, (a ^r) ^s =	, where <i>r</i> and <i>s</i> are	
	·		
	on-zero real numbers a and b (ab) ⁿ = 	, where <i>n</i>	
,	on-zero real numbers <i>a</i> and <i>b</i> (^{<i>a</i>} <i>b</i>) ⁿ =	-	

s you work throug	h the tutorial, complete the following q	juestions or sentences.	
1. The area of a	a square with sides of length x is wr	ritten as	Key Words: Monomial
	in one variable is a term of the forn , x is a integer.		Polynomial Binomial Trinomial Descending Ascending o
	U		(opposite) polynomial
3. A monomials.	is a monomial or a finit	e sum of unique	Learning Objectives:
. ,	ial expressions x ² + 2x + 1 is a made up of		 Explore the definitions to polynom expression
the variable o	ms in a polynomial are arranged so decrease from to said to be arranged in	, the	 Arrange th of a polync expression ascending descending Find the sum
variable incre	ms in polynomial are arranged so t ease from to ranged in	, the polynomial is	difference (or more) polynomial
7. To determine	if the sum of two polynomials is co	rrect, substitute a	
	for x. If you and the result is an,		
8. Why are x^2 c	and 2x not like terms?		

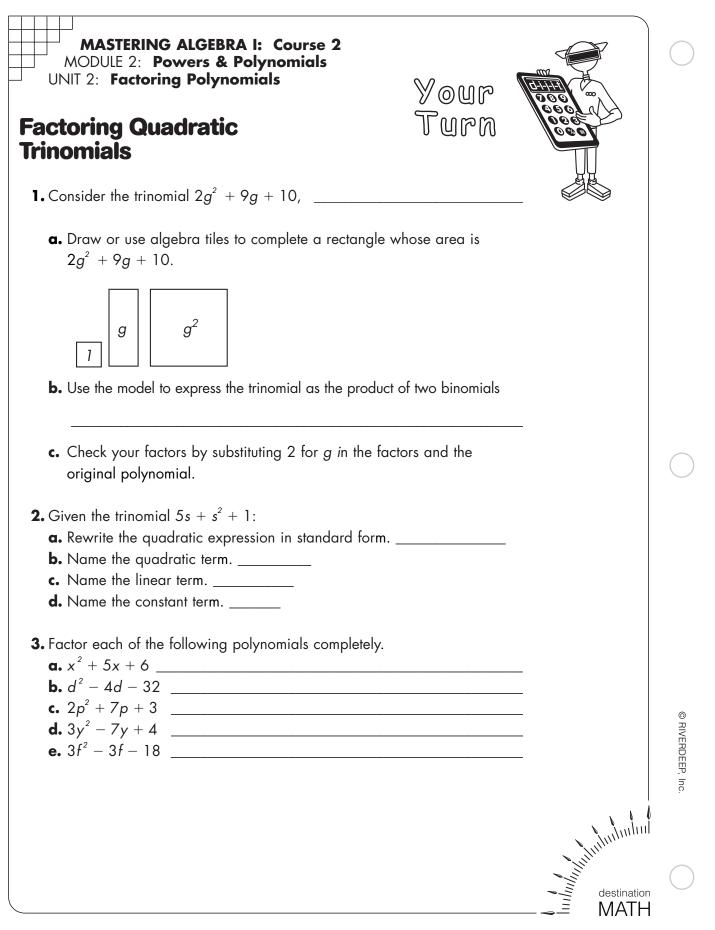

Name	Date	-
MASTERING ALGEBRA I: Course 2 MODULE 2: Powers & Polynomials UNIT 2: Polynomial Arithmetic Adding & Subtracting Polynomial Expressions 1. Is 2x-3 a monomial?Explain yo definition of a monomial	Your Turn ur answer, using the	C
 2. Simplify the following polynomial expressions simplified expression is a monomial, a binom a6 + 2x² + 9 + x - 3 	. Then indicate whether the ial, or a trinomial.	
b. $4s^{23} + 15s - 7s^{17} - 16s$ 3. Add the following polynomials and Write eac a. $(5x^2 - 3x + 7) + (2x^3 + 5x^2 + x + 5)$ b. $(-3b^4 + b^2 - b) + (b^4 - b^2 + 4)$ c. $(9c^2 + 3c - 2) + (7c^3 - 3c^2 - 3c)$	ch sum in descending order.	C
4. Subtract the following polynomials and Write ascending order. a. $(7a^3 - a) - (-4a^3 + 2a)$ b. $(8x^3 - 2x^2 + 1) - (4x^2 + x - 2)$ c. $(b^2 + b - 4) - (b^3 - 2b^2 - 4)$	each difference in	
5. The center pane in a panel of three windows the trinomial $2n^2 + 5n + 3$. Each side pane is represented by the binomial $n^2 + 2n$.	, ,	0
a. What is the total area of the two side pane	es in terms of <i>n</i> ?	
b. What is the area of the center pane and o	ne side pane in terms of <i>n</i> ?	© RIVERDEEP, Inc.
c. What is the total area of the panel of three	e windows in terms of <i>n</i> ?	


UNIT 1: Polynomial Arithmetic	Student Logbook	
Multiplying Polynomials	LOGDOOK	>
As you work through the tutorial, complete the following qu	estions or sentences.	Key Words
 The width of the front of the brochure is represented. 	ed by the binomial	Product Factor Binomial Trinomial Perfect squ
2. For the front cover of the brochure, the expression	that demonstrates the	trinomial
application of theproperty to (n -		Learning Objectives
3. The result of multiplying two binomials, is the	of four	 Use an a model to represen product binomials
 4. What do the letters in FOIL represent when multip F O I 	lying two binomials?	 Use the distribution property the product two polyr Recogniz square or
 5. To check that a product is correct, of and see if the result is an 6. For all real numbers a and b, (a + b)² = 		binomial perfect s trinomial. • Recogniz product of sum and differenc monomia
7. For all real numbers a and b , $(a - b)^2$ is equal to b^2	the trinomial	differenc squares.
8. For all real numbers <i>a</i> and <i>b</i> , (<i>a</i> + <i>b</i>)(<i>a</i> - <i>b</i>) is eq	jual to	

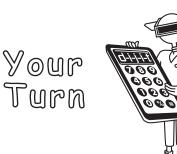
MODULE 2: Powers & Poly UNIT 1: Polynomial Arithmet	nomials tic		our Urn		\bigcirc
Multiplying Polynomials	5	0 (
 Express the area of each rectangle in this diagram as the product of its length and width, and as a trinomial in terms of n. 		n			
a. Rectangle <i>ABDC</i>	A =	С	e g		
b. Rectangle <i>CDFE</i>					
c. Rectangle <i>EFHG</i>					\frown
d. Rectangle <i>ABHG</i>					\bigcirc
 Use the FOIL method to multiply a Find the square of the following b correct by substituting -2 for the square of th	inomials. Verify				
a. $(3b + 2)^2$					
b. $(5y + 3)^2$					
4. The product of (x + 4) (x - 4) is					© RI
5. The length of one panel of a greet greeting card consists of two panel card in terms of <i>n</i> ?	els of equal size Explain how	, what is the you arrived	area of the at your		RIVERDEEP, Inc.
answer				destination	\bigcirc

	Unit Assessment	
	ONII WAARAANIGNI	
1. Which of the	following expressions are equivalent to $\frac{1}{4^{-2}}$?	
a. 4 ⁻²	b. 4 ²	
c. 16	d. $\frac{1}{8}$	
2. Simplify each	n of the following expressions.	
a. -(8 <i>a</i> ⁻⁶) (4	4a°)	
b. $\frac{15r}{3r^{-5}}$		
c. $4^5 x (4^3)^{-3}$		
d. $(-2x^{\circ}y^{3})^{4}$		
f. $\left(\frac{4r}{7s}\right)^3$		
	der mite is typically 0.038 inch long. Express this number in ation	
Mat A: $4n^2$ +		
Mat A: $4n^2$ + Mat B: $3n^2$ - Mat C: $2n^2$ +	+ 11n - 3 - $n - 2$ + $14n + 12$	
Mat A: $4n^2$ + Mat B: $3n^2$ - Mat C: $2n^2$ + a. What poly	+ 11n - 3 - $n - 2$	
Mat A: 4n ² + Mat B: 3n ² - Mat C: 2n ² + a. What poly and B? b. What poly	+ 11n - 3 - $n - 2$ + $14n + 12$	
Mat A: $4n^2$ + Mat B: $3n^2$ - Mat C: $2n^2$ + a. What poly and B? b. What poly Mat C tha c. What poly	+ $11n - 3$ - $n - 2$ + $14n + 12$ ynomials represents the area of the floor covered by Mats A ynomials represents how much more of the floor is covered by	

Name



ame		Date		
	Ստմቲ Ոտ	vestigation		C
2. Using the variable <i>m</i> , list each following.		essions for the dimension and	area of	
a. Carlyle & Company Length	Width	Area		
b. Department store 1 Length	Width	Area		
 C. Department store 2 Length 	Width	Area		
d. Atrium Length Length	Width	Area		
e. Other stores in the ma				
				C
 3. Decide on the area of you a. Based on the area, whe Length	nat are the dimensio Width			
4. The construction costs per	square foot for sto	re and atrium space is \$50.		
a. What will it cost to bu	ild the mall you des	igned?		© R
b. If the initial budget allo your mall?		ion is \$5,000,000, can you a	construct	© RIVERDEEP, Inc.
			antimitant of	
			destination	\bigcirc
20			_ <i>⊸_</i> ≡́ MATH	


		udent 🕄
inding Common Factor	rs Lo	gbook
you work through the tutorial, complete t	he following questions or sen	(
1. A prime number is a factors: and		Prime nui
2. Why is 1 not a prime number?	·	Composit Greatest of factor
, i		Degree o monom Degree o
3. A positive integer that is neither prim	ne nor equal to 1 is a 	polynor Prime po Common factor
4. To find the nearest common factor of		Fundame theoren arithme
then find the of of		nmon and Learning Objective
 To find the greatest variable common same base, 		•
		ldentify commo
6. The exponent of the variable in a main of the monom		le is the factor o more) n • Factor a
7. What is the greatest common factor	of 24n ³ and 60n ² ?	by findir greatest monom
8. To factor a polynomial means to exp	press it as	Factor a by findir commo factor.
9. The degree of a polynomial is the	degree d	of
B. To factor a polynomial means to exp	oress it as	· · ·

1. Write the prime factorization for each of the following monomial. Image: Constraint of the following monomial. a. 60	MASTERING ALGEBRA I: Course 2 MODULE 2: Powers & Polynomials UNIT 2: Factoring Polynomials	Your Turn		С
b. $155xy$ c. $144n^2$ 2. Find the greatest common monomial factor of each of the following groups of monomial expressions. a. $72y^4$, $40y^3$ b. $4a^5$, $-12a^4$, $28a^3$ 3. Consider the polynomial $6x^2 + 3x$. a. Draw or use algebra tiles such as x and x^2 , as shown on the left, to make a geometric representation of the rectangular area represented by the polynomial. b. Use your drawing to express the polynomial as the product of two polynomials. c. Verify that the product of the two polynomial factors represents $6x^2 + 3x$ by substituting 4 for x. 4. Factor the following polynomials completely. a. $12n^3 + 20n$ b. $72y^4 + 40y^3$, , , , , , , , , , , , , , , , , , ,			
 c. 144n²			-	
 groups of monomial expressions. a. 72y⁴, 40y³			-	
 b. 4a⁵, -12a⁴, 28a³	groups of monomial expressions.		_	
 a. Draw or use algebra tiles such as x and x², as shown on the left, to make a geometric representation of the rectangular area represented by the polynomial. b. Use your drawing to express the polynomial as the product of two polynomials. c. Verify that the product of the two polynomial factors represents 6x² + 3x by substituting 4 for x. 4. Factor the following polynomials completely. a. 12n³ + 20n				
polynomials c. Verify that the product of the two polynomial factors represents $6x^2 + 3x$ by substituting 4 for x. 4. Factor the following polynomials completely. a. $12n^3 + 20n$ b. $72y^4 + 40y^3$	 a. Draw or use algebra tiles such as x and x², as shown make a geometric representation of the rectangular a by the polynomial. x x² 	irea represented		
$6x^2 + 3x$ by substituting 4 for x. 4. Factor the following polynomials completely. a. $12n^3 + 20n$ b. $72y^4 + 40y^3$				
a. $12n^3 + 20n$ b. $72y^4 + 40y^3$		represents		© RIVERDE
b. $72y^4 + 40y^3$	4. Factor the following polynomials completely.			EP, Inc.
				A
c. $x^2 + 2x + 5x + 10$			infuture.	I
d. $3m^2 + 21m + 6m + 42$				

Factoring Quadratic Trinomials	Student Logbook
As you work through the tutorial, complete the followi	ng questions or sentences. Key Words:
1. When factoring the trinomial $x^2 + 10x + 24$ of numerical factors whose product is	Quadratic terr
2. What are the binomial factors for $x^2 + 10x - 10x^2$	Standard form
3. A monomial term whose degree is 2 is calle	d a Learning Objectives:
4. A is a monomic	• Factor a qua trinomial of t form $1x^2 + b$ where $c > 0$
5 A is another na whose degree is 0.	
6. Is the quadratic expression $x^2 + 10x + 24$ w Explain your answer.	ritten in standard form? • Factor a qua trinomial of t
7. If the constant in a quadratic polynomials the negative, then the signs of the constants in the	
8. What are the binomial factors of $y^2 + 7y - 2y$	12?
9. Represent the quadratic expression $2r^2 + 7r$ binomial factors	+ 6 as the product of two
10. Represent the quadratic expression $6n^2 + 11$ binomial factors.	n – 10 as the product of two

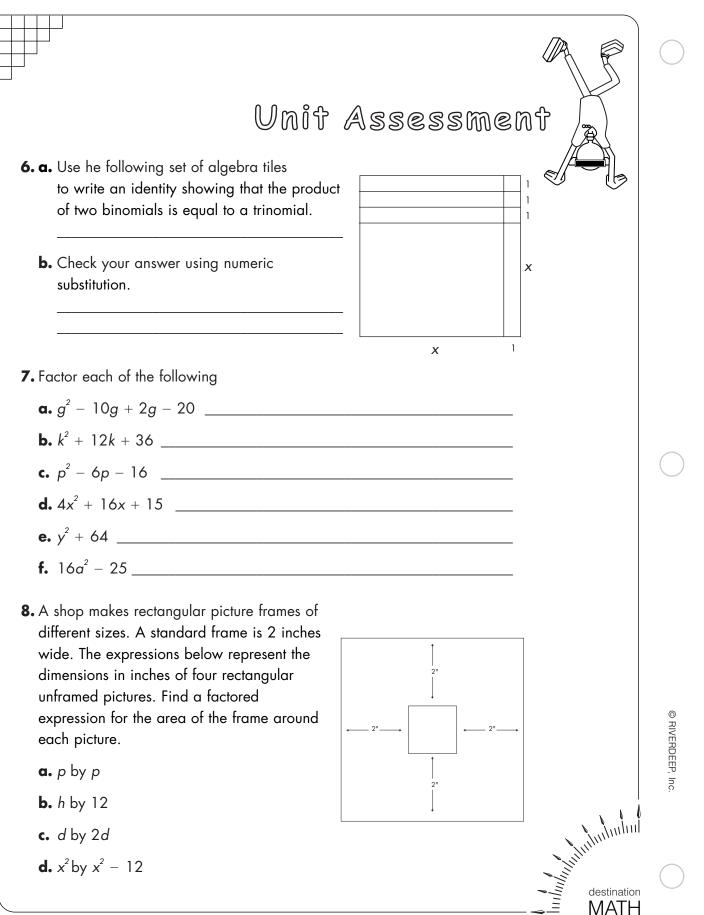
Special Cases		Log	book	
As you work through the tut	orial, complete the following	questions or senten	ces.	
 If a trinomial is of the is equal to 	$a^{2} + 2ab + b^{2}$, the	n it is a perfect squ	are and	Key Word Perfect so trinomia Quadratic
2. The polynomial (<i>a</i> ² –	b²) is known as the		of	Linear ter Constant Cubic pol
3. What are the binomic	al factors of $4x^2 - 9?$			Learning Objective • Recogn
4. If a and b are real nu	umbers, a ² - b ² =		-	factor a square $ax^2 + 2$
5. Factor $25k^2 - 144$.				 Recogning factor the difference
1 /	– 64 an example of the d your answer			squares a ² - b ² . • Factor a
7. Factor $x^4 - 64$ comp	letely			polynor comple
8. A polynomial that ca	nnot be factored is		(
•	lynomial expression, use t k for any	e 1		
and apply the expression.		property to sim	olify the	
	emaining polynomial to se	, .	a	
	or the			
	umbers and have no comr	···· f	L^{2} :	Induding .

UNIT 2: Factoring Polynomials

MASTERING ALGEBRA I: Course 2 MODULE 2: Powers & Polynomials

1. Complete the table below.

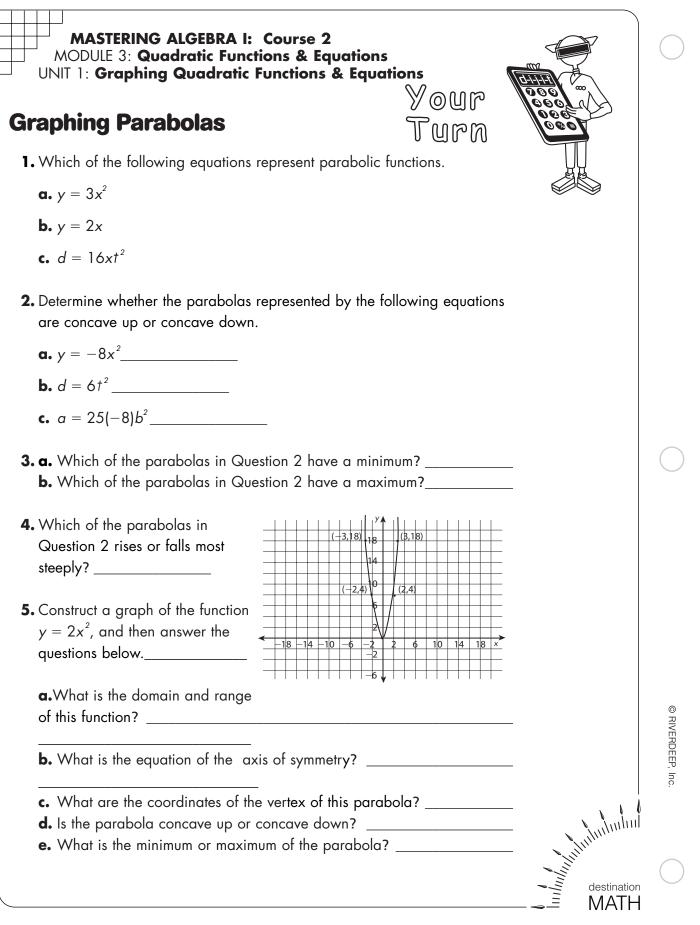
Factored form	Trinomial expression	Special case
	$x^2 + 18x + 81$	
(2x +10) ²		
	$x^2 - 6x + 9$	
	x ² - 25	
(x +7) ()	x ²	difference of two squares
	x ² + 81	sum of two squares
	$4x^2 - 80x + 400$	


- **2. a.** What is meant by the "square of the difference" and the "difference of squares?" Give an example of each.
 - **b.** Use numerical substitution to verify that the examples you gave in (a) are not equivalent.

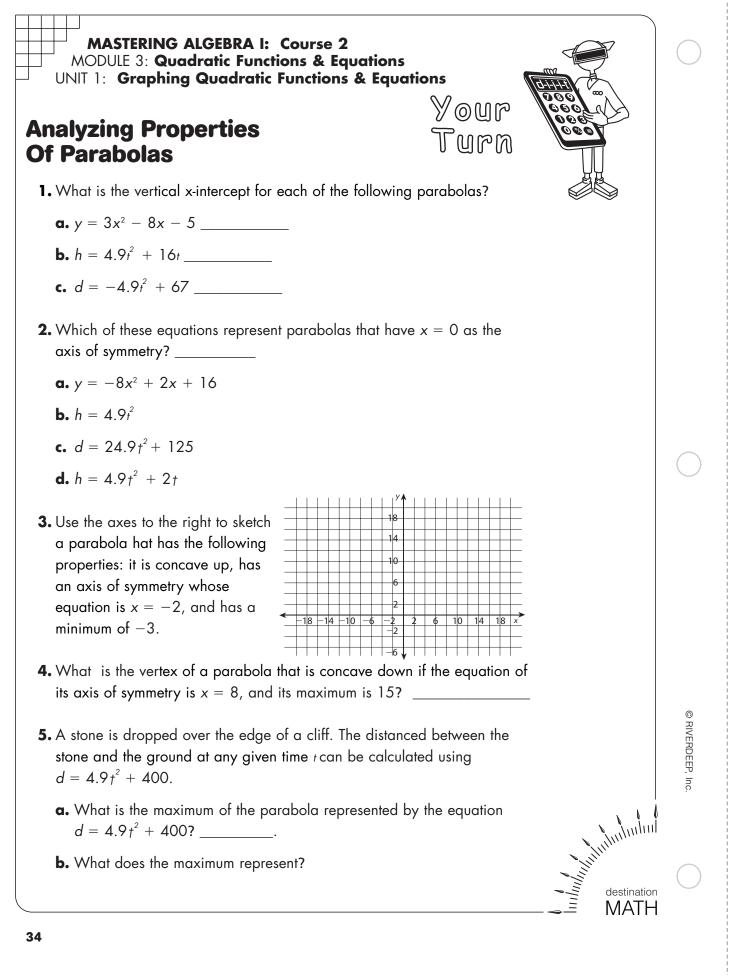
© RIVERDEEP, Inc

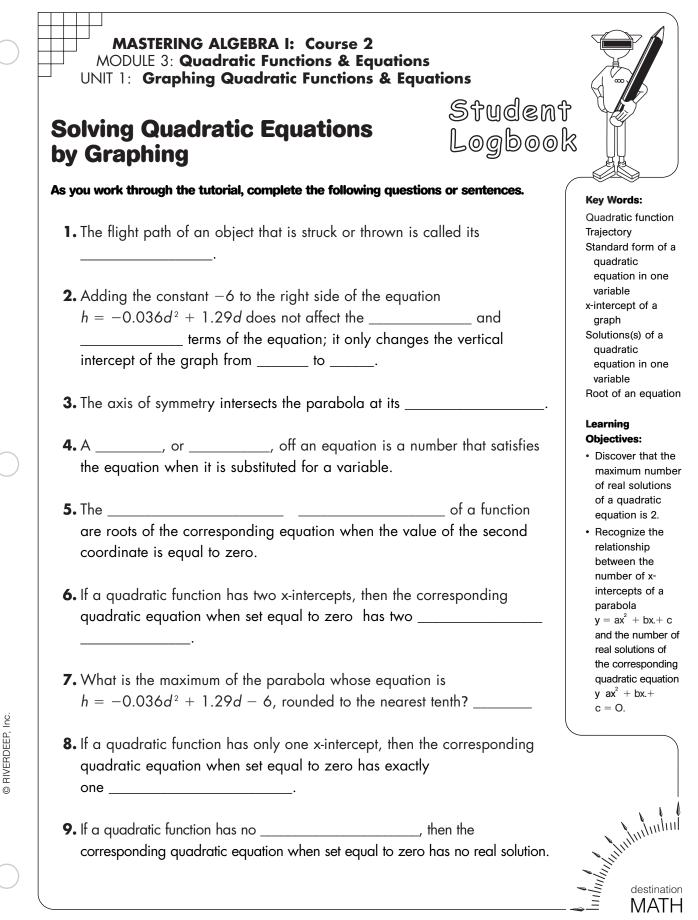
Antin Martin Land MATH

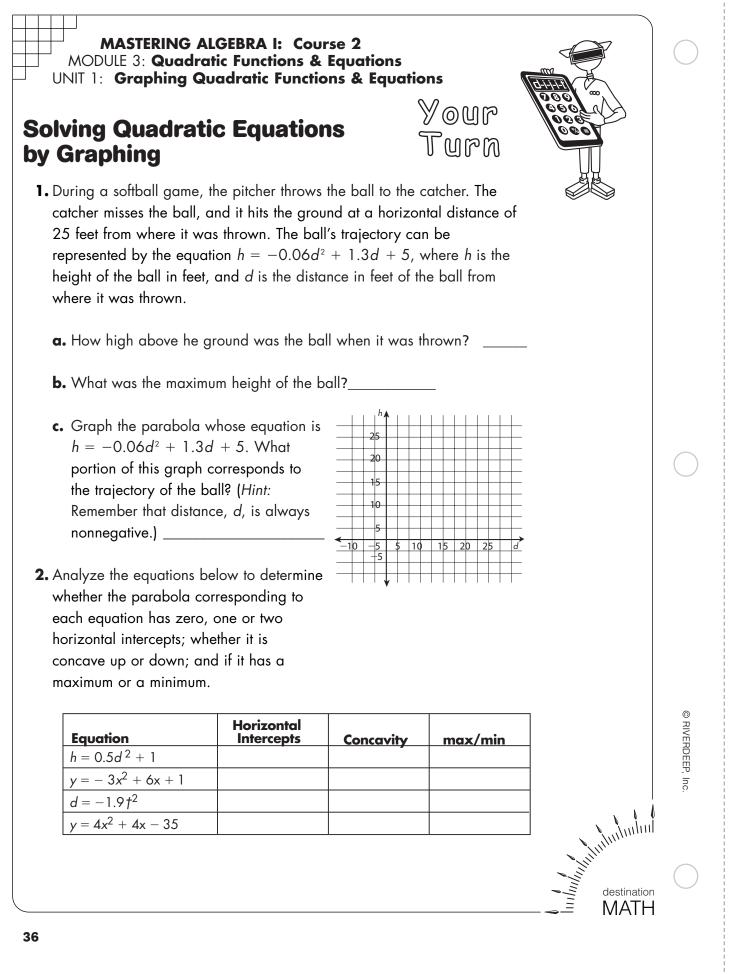
\bigcirc			GEBRA I: Course 2 ers & Polynomials Polynomials		
			Unit	Assessment	
	elii	minating all numbe ditional steps. Eras	rs greater than 2 that we tosthenes used to identify	numbers, Erastosthenes began by ere multiples of 2. Describe the v the other prime numbers less tha	
		Find two numbers	4 into its prime factors.	n factor is a composite number	
\bigcirc	b.	Find two numbers	whose greatest commo and	n factor is a prime.	
		-	common factor of b ⁴ − mon factor(s) of the term		
		Terms	Greatest common fac	tor	
		16, 24			
		64m, 32m, 96m			
		$42x^2$, $18x^3$			
© RIVERDEEP, Inc.					
\bigcirc					Superinterior
\bigcirc					destination MATH

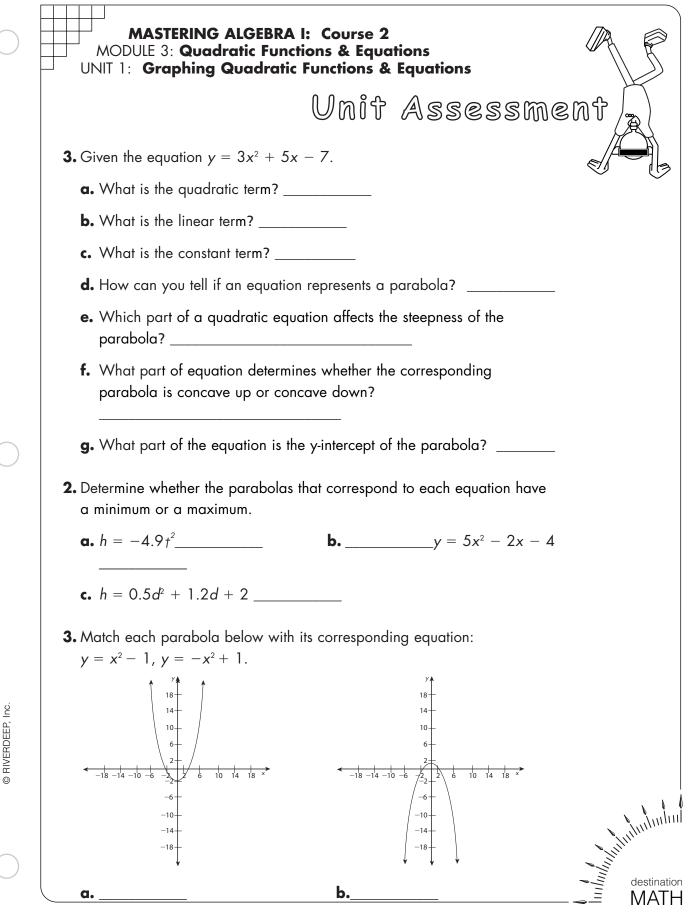

Name

		_
	MASTERING ALGEBRA I: Course 2 MODULE 2: Powers & Polynomials JNIT 2: Factoring Polynomials	
	Unit Investigation	EY.
Invest	igating Floor Plans	
	rson wants to install a carpet in a square room whose dimensions are s fee g two adjacent sides of the room, the owner wants 2 feet of tile instead of a	,
	et C represent the length of the carpet in feet, then Make a sketch of the flo oom. Label the parts that are to be carpeted and the parts than are to be t	•
2. La	abel the sketch above in terms of C and 2.	
3. L	abel the sketch above in terms of C and 2. Jse the tiles to help you write a polynomial in expanded form and in factor epresents the total area of the square region to be tiled and carpeted.	ed form that
3. U re	Jse the tiles to help you write a polynomial in expanded form and in factor	ed form that
3. U re E	Jse the tiles to help you write a polynomial in expanded form and in factor epresents the total area of the square region to be tiled and carpeted.	ed form that
3. U re E F 4. S	Use the tiles to help you write a polynomial in expanded form and in factor epresents the total area of the square region to be tiled and carpeted. Expanded form factored form Suppose the owner wants the same arrangement of carpeting but wants <i>n</i> for	
3. U ra E F 4. S	Use the tiles to help you write a polynomial in expanded form and in factor epresents the total area of the square region to be tiled and carpeted. Expanded form	eet of tile inste
3. U F 4. S o d	Use the tiles to help you write a polynomial in expanded form and in factor epresents the total area of the square region to be tiled and carpeted. Expanded form factored form Suppose the owner wants the same arrangement of carpeting but wants <i>n</i> for of 2 feet.	eet of tile inste rms of c and r
3. U re E 4. S o a b o	Use the tiles to help you write a polynomial in expanded form and in factor epresents the total area of the square region to be tiled and carpeted. Expanded form factored form Guppose the owner wants the same arrangement of carpeting but wants <i>n</i> for of 2 feet. In the space above, represent the new floor plan and label all parts in te Write a polynomial in expanded form and in factored form that represent	eet of tile instea rms of c and n

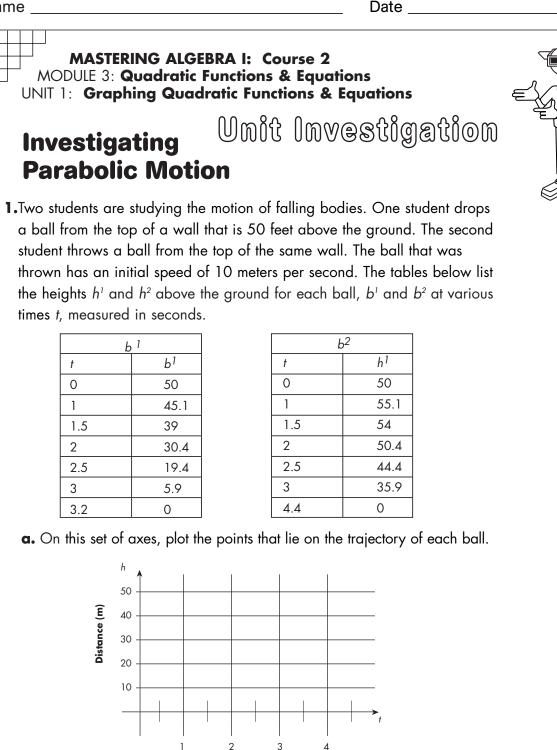

		\bigcirc
Unit Investigation		
5. What special case of polynomial is represented when the width of the tile on two walls is equal?		
6. Draw an example of a rectangular floor with carpeting and tile whose total area equals the product of two binomials.		
		\bigcirc
 Represent the total area of the floor, including its carpet and tiles as binomials in expanded form and factored form. 		
Expanded form		
Factored form 8. What is the advantage to factoring the polynomial that represents the area of a rectangular floor		© RIVERDEEP, Inc.
	destination MATH	
	destination	\bigcirc


Graphing Parabolas	Logbool	3
s you work through the tutorial, complet	te the following questions or sentences.	
1. What is a quadratic function?		Key Words: Quadratic fund Parabola
2. In the function y = ax ² , the number, and the to zero.	can be any real must be greater than or equal	Parabolic func Minimum of a parabola Maximum of a parabola Symmetry
3. When the coefficient a in $y = ax$	² is positive, the parabola is concave	Axis of symme Vertex of a pa Even function
4. When the coefficient a in $y = ax$	² is negative, the parabola is concave	Learning Objectives: • Recognize t graph of the
5. What is the minimum of a parabole $y = ax^2$.	ola whose equation is of the form	quadratic ec $y = ax^2$ is a fu For a graph of $y = ax^2$: • Identify the o
6. What is the maximum of a parab $y = ax^2$.	ola whose equation is of the form	and range. Describe the of the paramon the shap the graph.
7. An that, when folded, the two sides of	is a line that divides a shape so of the shape coincide.	Determine the minimum ar maximum.
8. What is the equation of the axis a equation is of the form $y = ax^2$?		 Determine the equation of axis of symm Determine the equation of the
9. The intersection of a parabola an of a parabola.	d its axis of symmetry is called the	coordinates vertex.




Inc. Inc.

UNIT 1: Graphing Quadratic Function	
Analyzing Properties Of Parabolas	Student Logbook
s you work through the tutorial, complete the followi	ing questions or sentences. Key Words:
1. What does the constant 1,000 in the equation represent?	Parabolic fu
2. The parabola defined by the quadratic equa concave and has a	tion $y = -4.9x^2 + 1,000$ is whose y-coordinate is parabola Symmetry Axis of symmetry Vertex of a p
3. The standard form of a quadratic function in $y = ax^2 + bx + c$, where $a \neq $, and $a, b, $	in two vari
4. The equation $h = -4.9t^2 + vt$ is an two variables because the constant c is equ	al to parabolas equations the form
5. To find the maximum of the parabola $h = -t$ between the horizontal intercep of <i>t</i> into the equation to find the value of	ots, then substitute that value • Examine to properties
6. The maximum of the parabola whose equation	on is $h = -4.9t^2 + 68.6t$ is the form $y = ax^2 + $ • Examine the properties
7. The maximum of the parabola whose equation occurs when $t =$	on is $h = -4.9t^2 + 68.6t$ $y = ax^2 + b \neq 0, c \neq 0$
8. If b = 0, then the graph of y = ax ² + c is a symmetry is the, and whose	whose axis of
9. If $c = 0$, then the graph of $y = ax^2 + bx$ ha	



Unit Assessment	
4. Analyze the equations of these parabolas to determine the number of real solutions of the corresponding quadratic equations set equal to 0.	B
a. $d = 2t^2 + 6t$	
b. $y = 5x^2 + 17$	
c. $h = 4.9t^2 + 5t - 6$	
d. $y = x^2$	
 A car accelerates to merge onto the highway. If the acceleration remains constant, the distance the car has traveled after any given time can be found using the equation d = 2t² + vt, where t is the time in seconds, v is the initial velocity in meters per second, and d is the distance in meters. 5. Graph the function d = 2t² + 4t, with t on the horizontal axis, and d on the vertical axis. 6. Suppose a car enters the highway with an initial velocity of 4 meters per second and accelerates for 5 seconds. What is the domain of the 	C
function that represents the car's	
motion during this time period?	0
7. What is the range of the function during the 5-second interval?	© RIVERDEEP, Inc.
des M	, , , , , , , , , , , , , , , , , , ,
	С

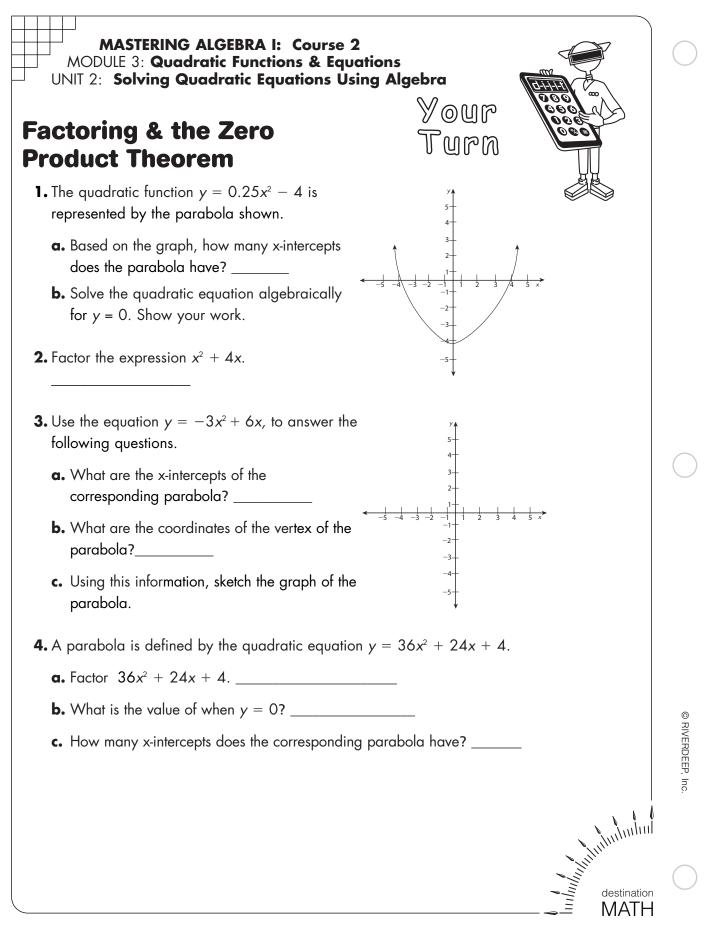
b. Draw and label a smooth curve through each set of points to show the trajectory of each ball.

Time (s)

c. Which ball spent a longer time in the air? _____Explain.

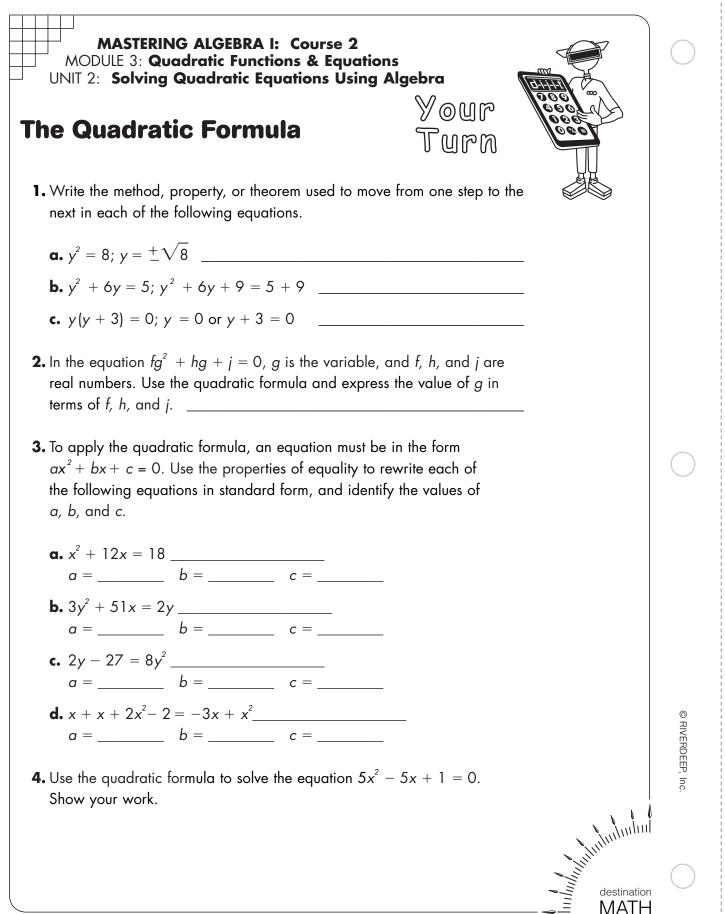
39

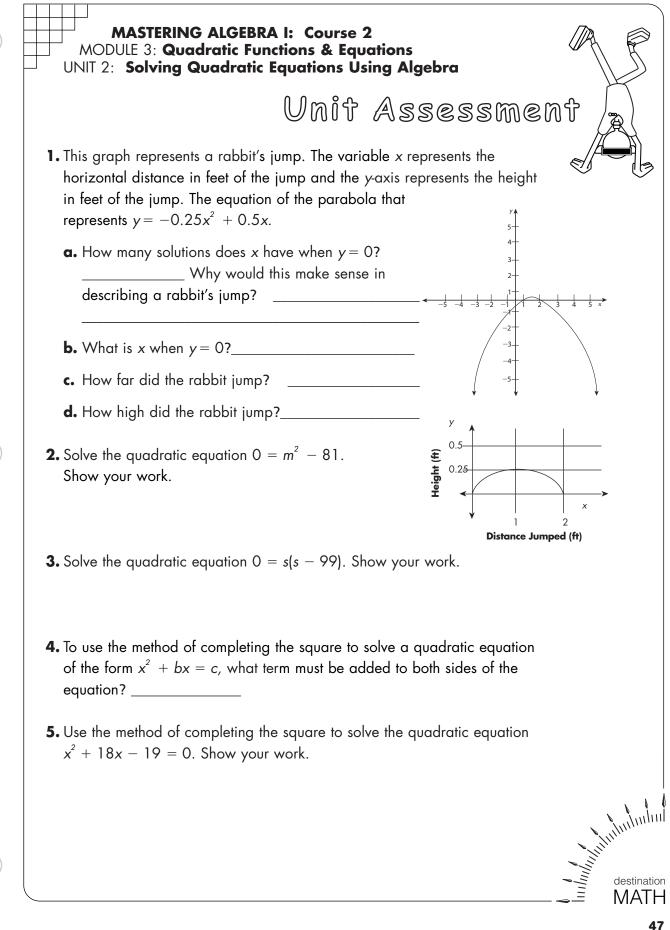
destination MATH


Superinterior

Ν	ar	ne
---	----	----

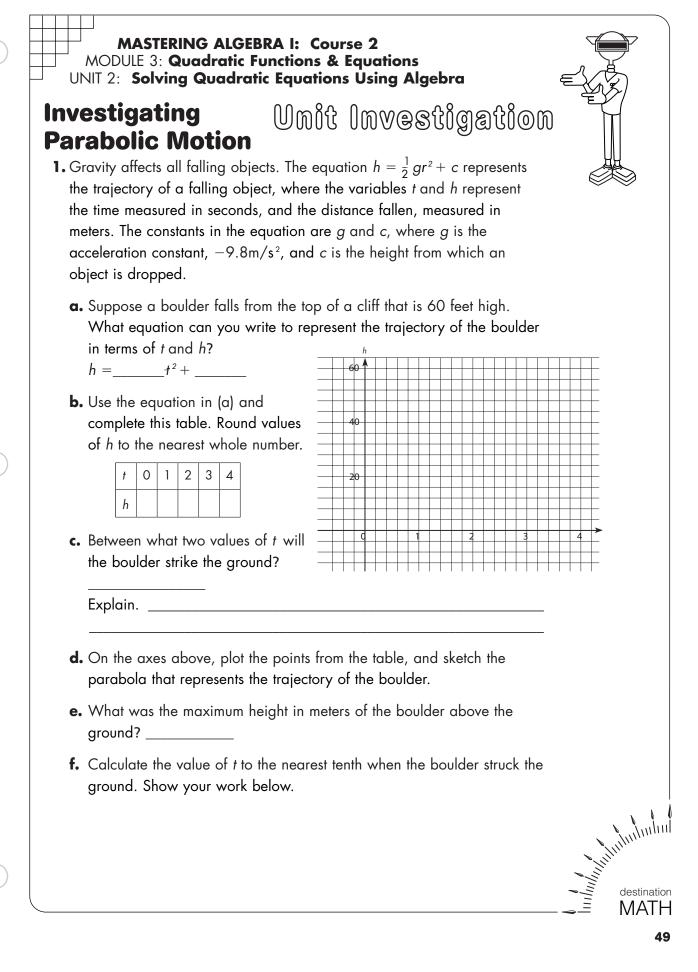
	\bigcirc
Unit Investigation	
d. Use the graph and approximate the maximum height reached by b^2	
e. After about how many seconds did b^2 reach its maximum height?	
f. What was the maximum height of <i>b</i> ⁷	
2. The equations for the parabolas that represent the trajectory of each ball are $h^{1} = 4.9t^{2} + 50$ and $h^{2} = -4.9t^{2} + 10t + 50$.	
a. What does the coefficient of the linear term in the equation of h^2 represent?	
b. What does the constant in each equation represent?	
c. What is the initial velocity of <i>b</i> ¹	
3. The formula to find the distance an object travels is $d = vt$, where d is the distance, v is the speed of the object, and t is the time. How many meters from the foot of the wall did each ball fall when it landed? b^{1} : b^{2} :	\bigcirc
4. Use the formula in (3) and complete the table to calculate the horizontal distance of b^2 from the wall as it fell. Then, on the axes below, plot the points and sketch the graph of $d = vt$.	
50 0 E 40 B 1	
E 40 30 20 20 1	
	® RIVERI
1 2 3 4 Time (s)	© RIVERDEEP, Inc
5 What does the shape of the graph tell you about the motion of the ball?	~
destination	\bigcirc

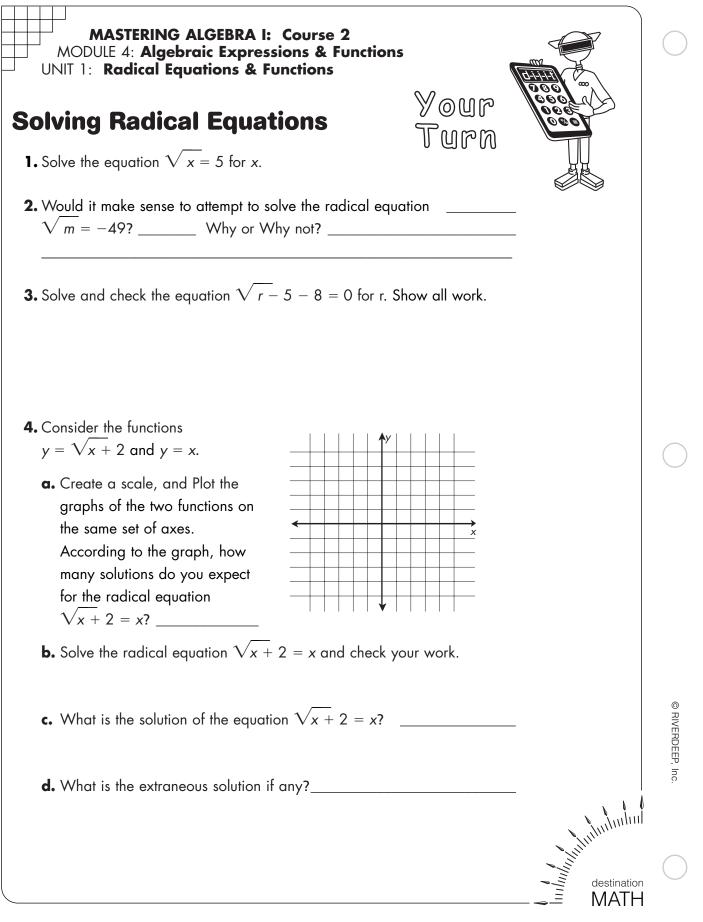

actoring & the Zero roduct Theorem	Student Logbool	
s you work through the tutorial, complete the following c	juestions or sentences.	Key Words:
1. The storeal numbers and $ab = 0$, then $a = 0$ or $b = 0$.	ites that if a and b are	Zero product theorem Double roots of a quadratic equation
2. In an equation where the product of two binomia $0 = (0.4x + 2) (0.4x - 2)$, there are variable x.		Learning Objectives: • Recognize that the solutions of
3. If a quadratic equation in one variable, <i>x</i> , has to of the equation in two variables has two	• 1	quadratic equation are th x-intercepts of corresponding function.
 Once you know the values of the horizontal interaction and the and the If 0 = x (x + 20) then x = or x + 20 	of the parabola.	 Solve a quadra equation in one variable by factoring the difference of tw
 Since the graph of the function y = πx² + 20πx is between the width and area of the annulus, it m points in quadrant 	represents he relationship	squares. • Solve a comple quadratic equation in one variable by factoring.
7. If $x + 22 = 0$ or $x - 2 = 0$, then $x = $	or x =	 Solve a quadra equation in one variable by factoring a
B. If the factors of a quadratic polynomial in an eq ax ² + bx + c = 0 are the square of a linear bind corresponding equation has a	omial, then the	perfect square trinomial.
9. The real solutions of the quadratic equation ax^2		
$y = ax^2 + bx + c.$		destinat

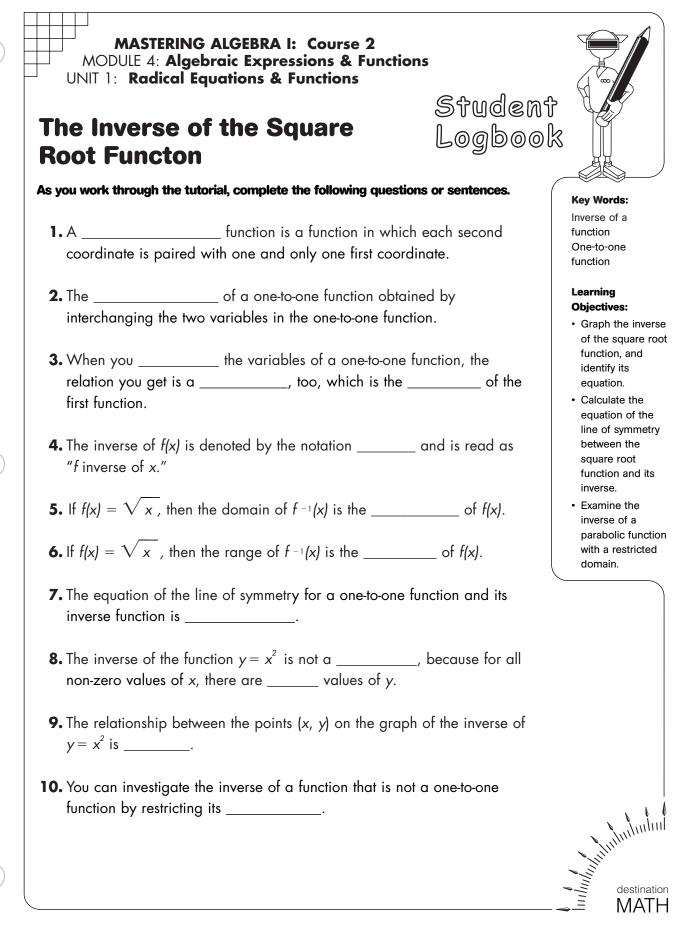


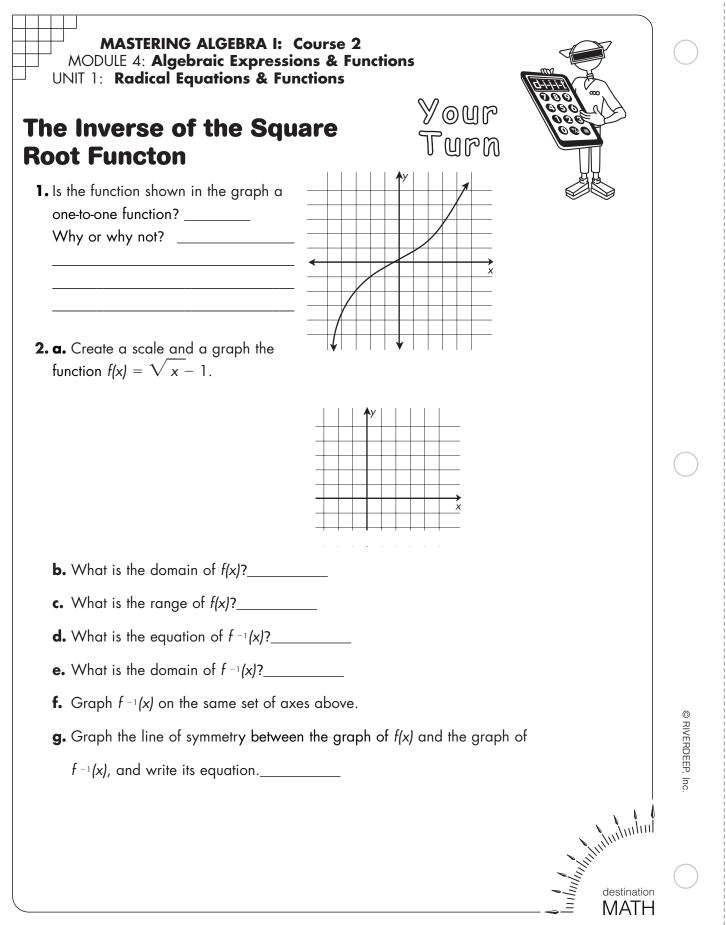
	e Root Method & g the Square	Logbo	nt ok
As you work through the	ne tutorial, complete the following o	questions or sentences.	Key Words: Pi (π)
1. According to the if $n^2 = k$, then n	$k = \frac{k}{2} - \sqrt{k}$ for any real number	k , where $k \ge 0$.	, Volume Isolate Inverse operat
,	opposites states that for any rea and		Learning Objectives: • Using the
3. The two number	$\frac{6}{5}$ and $-\frac{6}{5}$ are opposites becaus	e their is zero	properties o
add a number to	ve for x in an equation such as x to both sides of the equation that	gives a	
	, then x = or x = _		
	s added to each side of the equiside is a perfect square trinomic		
7. The equation <i>x</i> -	$-2 = \frac{+}{-}\sqrt{3}$ means that	or	
	of a quadratic equation of the f use the		
y = 0, you can t			1
9. To solve a quadr	ratic equation of the form $ax^2 + ax^2$ rational numbers, use the methe		

MASTERING ALGEBRA I: Course 2 MODULE 3: Quadratic Functions & Equation UNIT 2: Solving Quadratic Equations Using		С
he Square Root Method & Completing the Square	Your Turn	
1. How many real solutions are there for he quadratic	equation $x^2 = 9$?	
2. Find the roots of the following equations using the s	square root property.	
a. $2x^2 - 18 = 0$ b. $15x^2 - 15 = 0$		
c. $13x^2 - 52 = 0$.		
3. What term must be added to the expression x ² + 2 square trinomial?	bx to make it a perfect	
4. What term must be added to each of the following is a perfect square trinomial?	expressions so that the result	С
a. x ² + 12x		
b. $x^2 + 20x$		
c. $x^2 + 3x$		
5. Use the method of completing the square to solve the $x^2 + 4x - 5 = 0$. Show your work.	he quadratic equation	
 6. Use the method of completing the square to solve th x² - 10x + 18 = 0. Show your work. 	he quadratic equation	© RIVERDEEP, Inc.
	destination	С


The Quadratic Formula	Student Logbook	
s you work through the tutorial, complete the followin	g questions or sentences.	Words:
 The quadratic formula states that the solutions a, b and c are real numbers and a ≠ 0 are: 	of $ax^2 + bx + c = 0$, where for	quadratic nula iminant
 2. In the quadratic equation 2x² + 8x − 13 = 0 c = 3. Express √ 168 in simplest radical form 	• Red ste of t for	ctives: cognize the ps in the p the quadrat mula and
 4. If the quadratic formula is used to solve an eq corresponding parabola has no x-intercepts, the y = 0 is not a number. 	uation for which a • Use hen the value of x when det qua	erpret its aning. e the quad mula to cermine tha adratic uation does
5. The discriminant in the quadratic formula is th6. In the quadratic formula, the	e expression roo • Use dis- is the discriminant. det	
7. If the discriminant is negative, the equation he roots.	roo 15 qua equ	adratic uation in or iable.
8. If the discriminant equals zero, the the equation root.	on has	
9. If the discriminant is positive, the equation has	s roots.	
		,) .

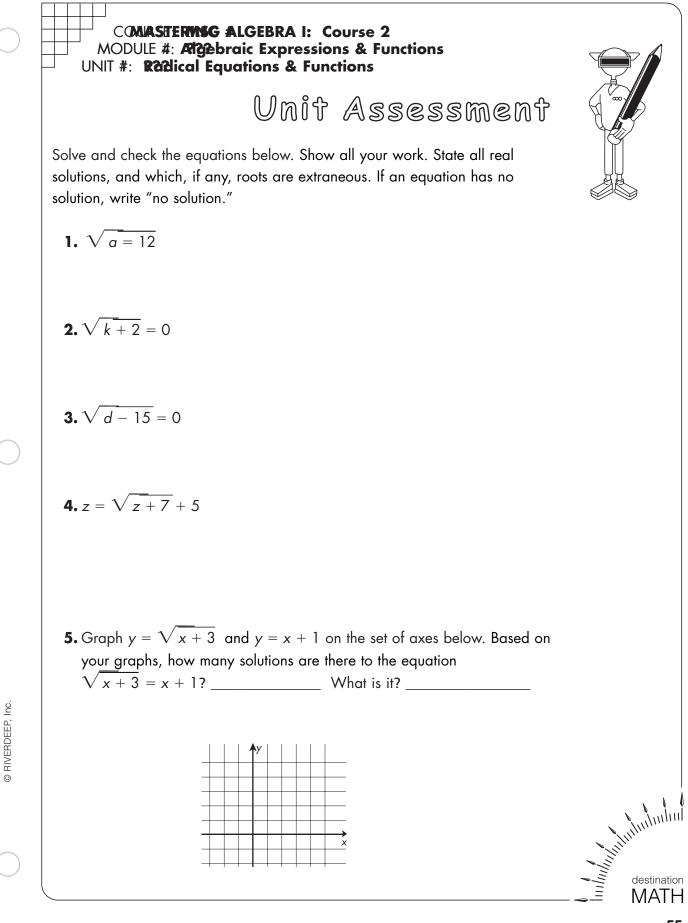

e the quadratic formula to bw your work. nat does the discriminant t lculate the discriminant, th adratic equations.	tell you about the	e solutions of a qu	+ 5.	
nat does the discriminant t	tell you about the	on 0 = x ² + 7x -	+ 5.	
nat does the discriminant t	tell you about the	e solutions of a qu		ion?
lculate the discriminant, th		·	adratic equat	ion?
lculate the discriminant, th		·	adratic equat	ion?
lculate the discriminant, th		·	adratic equat	ion?
lculate the discriminant, th		·	adratic equat	ion?
culate the discriminant, th		·	adratic equat	ion?
culate the discriminant, th		·		
	hen describe the	nature of the root		
	hen describe the	nature of the root		
	hen describe the	nature of the root		
aratic equations.			s for each of t	the following
			7	
Quadratic equationa. $5x^2 + 6x + 5 = 0$	Discriminant	Nature of roots	<u>;</u>	
a. $5x^2 + 6x + 5 = 0$ b. $6x^2 + 6x + 7 = 0$			-	
c. $2x^2 + 8x + 2 = 0$			-	
d. $8x^2 + 3x - 4 = 0$			-	
1.0x + 3x + 4 = 0				
nich of the following equa	ations correspond	l to parabolas tha	t have exactly	one one
itercept.				
2				
$y = 5x^2 + 10x + 5$				
$y = 0.25x^2 + 2x + 4$				
$y=4x^2+3x+4$				
$y = 4x^2 + 3x + 4$				S Sului
$y = 4x^2 + 3x + 4$				destination

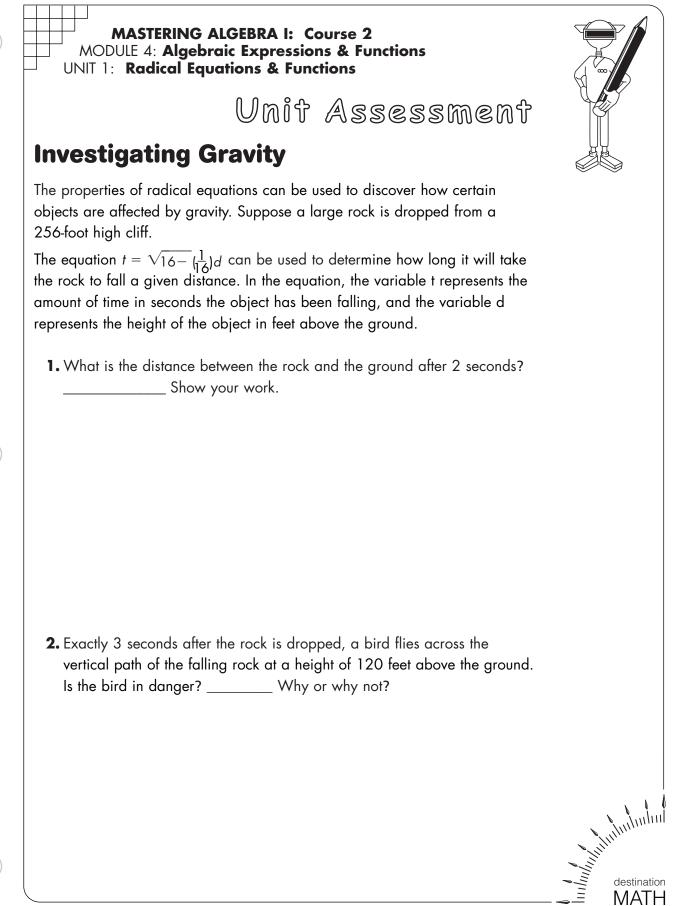

Name



Unit Investigation	
2. Two players, A and B, are trying out for a position on the softball team. Whoever throws the ball farther will make the team. The equation that represents the trajectory of a ball thrown by player A is $y = 0.04x^2 + x + 2$. The equation that represents the trajectory of a ball thrown by player B is $y = 0.05x^2 + 1.18x + 2$. In each equation, x represents the horizontal distance in feet between the ball and a player, and y represents the height in feet of the ball above each player's shoulder.	
a. What is the initial height of the ball thrown by each player?. Player A:	
Player B:	
b. Use the two equations above and for each value of x, calculate the values, to the nearest tenth, for yA and yB. $ \frac{x \ 0 \ 5 \ 10 \ 15 \ 20 \ 25 \ 30}{y_A} = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = $	\bigcirc
c. Plot the points from the table and sketch the trajectory of each ball.	
d. Use the graph and tell which player threw the ball higher.	
 e. Use the graph and approximate the horizontal distance that each player threw the ball. Player A:ft. Player B:ft. 	
f. Use the quadratic formula and in the space below, calculate the distance, in feet, that the farther ball traveled. Round your answer to the nearest tenth.	© RIVERDEEP, Inc
g. Which player made the team? Player	destination
50	MATH

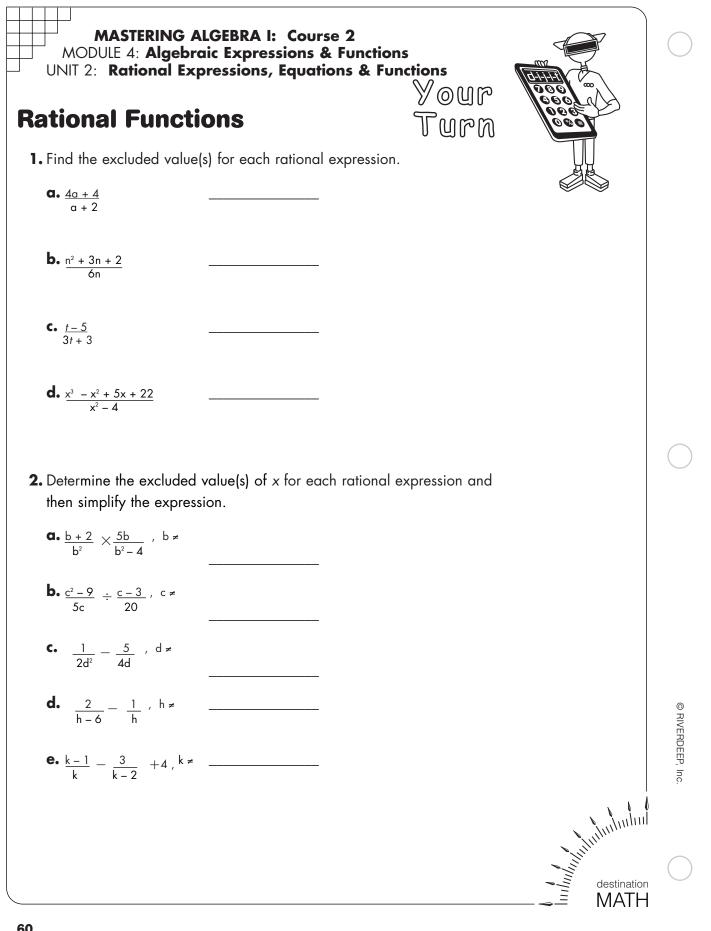
	Studen	
	olving Radical Equations Logboo	
s yo	ou work through the tutorial, complete the following questions or sentences.	
	A is an equation in which a variable is under a radical sing.	Key Words: Radical equat Extraneous ro
2.	If a and b are real numbers and $a = b$, then	Learning Objectives:
3.	The of a number can be expressed using an exponent of	 Recognize a solve a simplication radical equation Determine i
4.	Another way to solve a radical equation is to rewrite the expression using the exponent $\frac{1}{2}$, and then to both sides of the equation.	radical equa has a real solution. Solve radica equations algebraical Determine
5	Explain how graphing the system of equations $y = \sqrt{x}$ and $y = 2$ can	radical equa
5.	be used to check the solution of the radical equation $\sqrt{x} = 2$.	has an extraneous solution.
		- extraneous
6.	be used to check the solution of the radical equation $\sqrt{x} = 2$	- extraneous
6. 7. 8.	be used to check the solution of the radical equation $\sqrt{x} = 2$	- extraneous



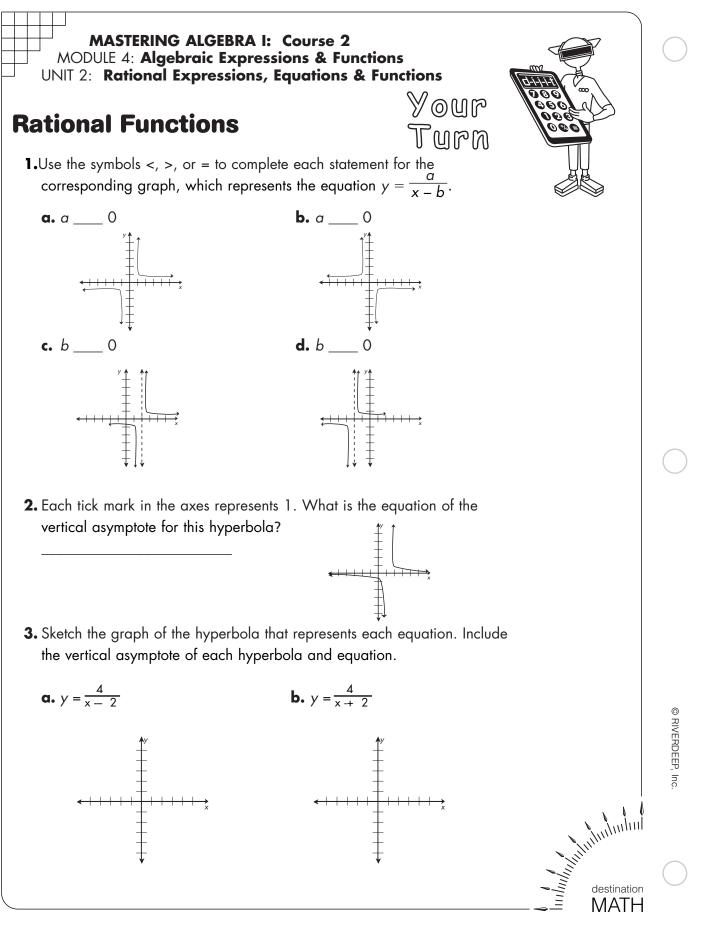


Name _____

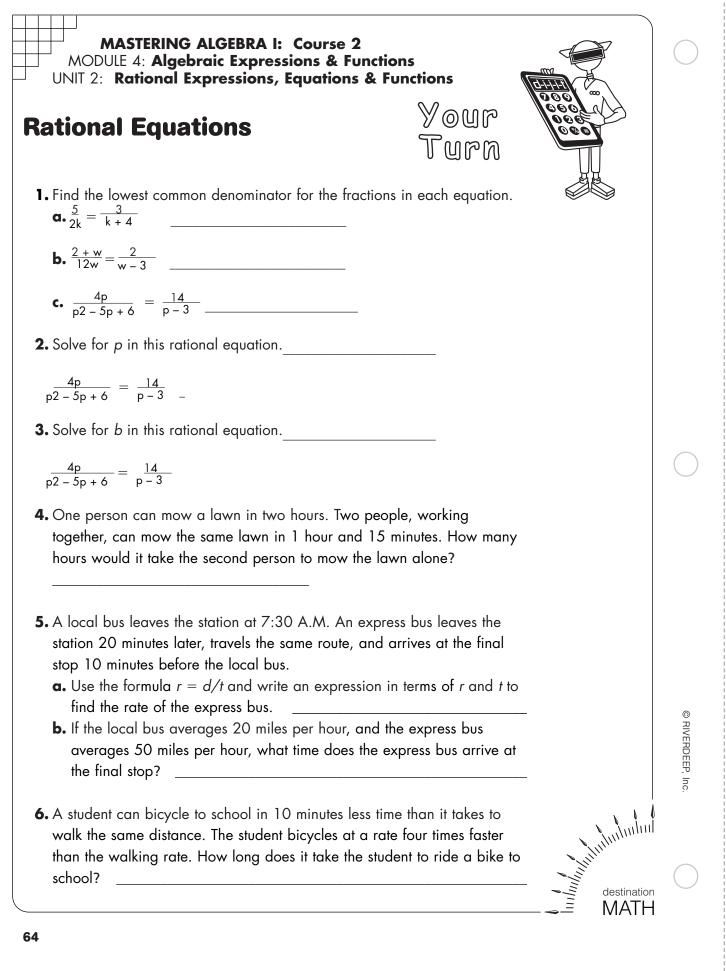
Date _____

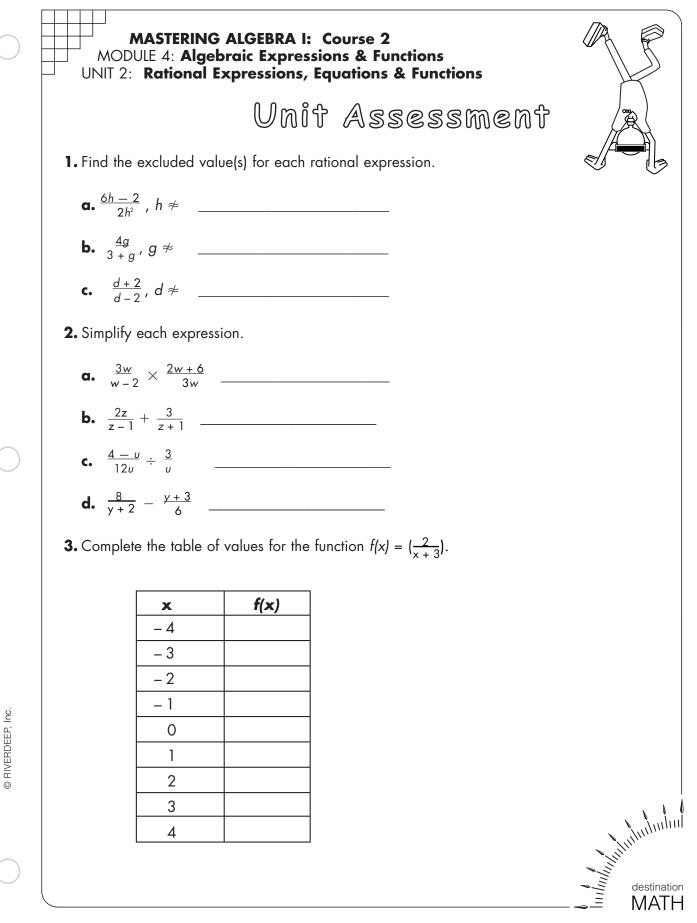

Unit Assessment 6. Solve and check the equation $\sqrt{x-1}-1=\frac{x}{5}$. Show your work.	\bigcirc
7. Is the function shown in this graph a one-to-one function? Why or why not?	\bigcirc
8. Consider the function $f(x) = \sqrt{x+2}$ a. What is the domain of $f(x)$?	© RIVER
f.Graph f(x) and f -1(x) on the same set of axes. Show the line of symmetry between the graphs.	RIVERDEEP, Inc.

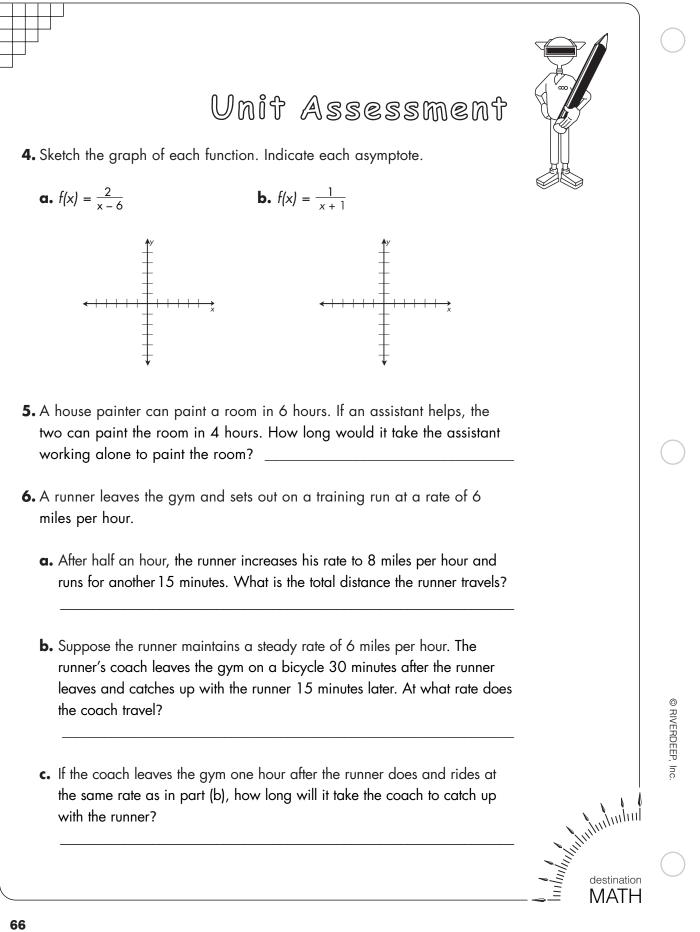
57

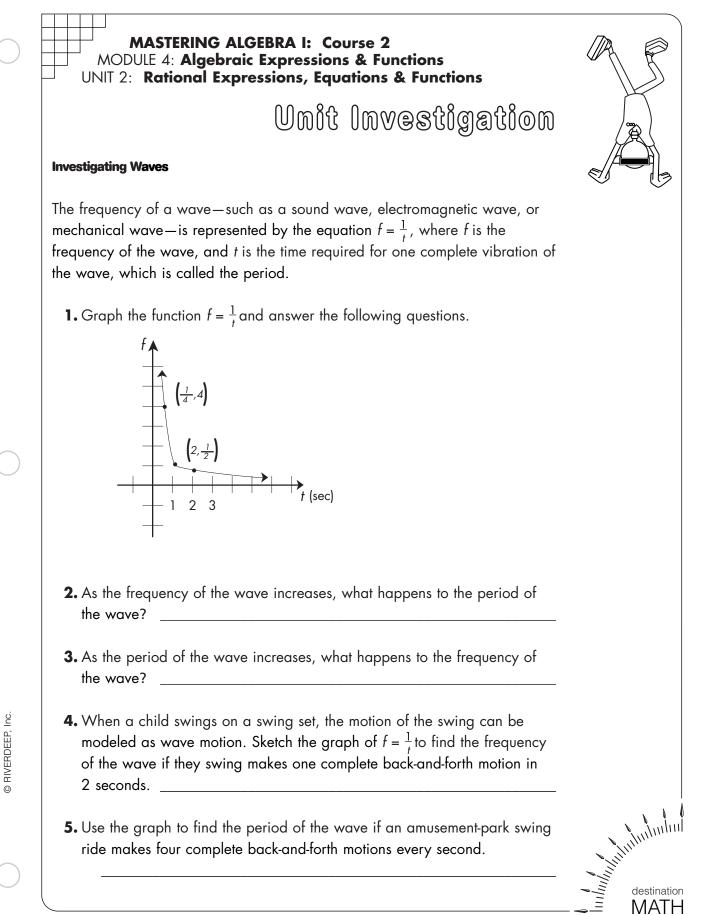

Name	Date		
3. Draw the graph of $t = \sqrt{16 - (t_1^2 - t_2^2)^2}$	Unit Investigati J ^{Jd}	ion	\bigcirc
values. What set of values is app	pove the ground in feet, it has restricted propriate for <i>d</i> ? vay to the ground? Round your answer to Show your work.		
6. At what time, <i>t</i> , does the rock hit	t the ground? Show your work.		
7. What is the range of the function Explain your answer.	n for values of d from 0 to 4?		© T
8. Is the function a one-to-one funct	tion? Explain.		© RIVERDEEP, Inc.
		destination	\bigcirc

Rational Functions	Student Logbook
s you work through the tutorial, complete the followin	e
1. A is and denominator are polynomials, and the denominator is at least	
2. If a, b, c, and d are real numbers, and c and $\frac{a \times b}{c \times d} =$	• Ide of : rati
 3. If a is a non-zero real number, 4. Any value of a variable that results in a zero 	denominator is an exp
5. Does finding the quotient of two rational expr rules as dividing fractions? Expl	rat
6. If a, b, and c are real numbers and $b \neq 0$, the 7. If a, b, c, and d are real numbers, and b and	$en \frac{a \times c}{b \times b} = en $
then $\frac{a \times c}{b \times d} =$ 8. To find the excluded value of x in a rational e	• Fin difi rati
of the expression equal to 0 and	
9. If a, b, c, and d are real numbers, and b, c, $\frac{a}{c} \div \frac{b}{d} = \frac{a}{c} \times \underline{}$.	and <i>d</i> ≠ 0, then

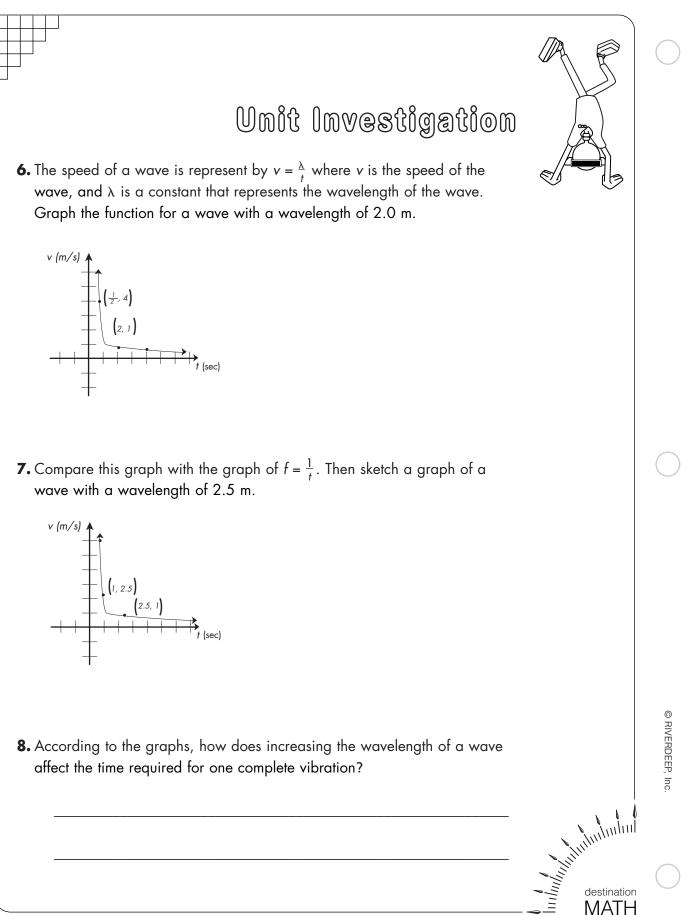


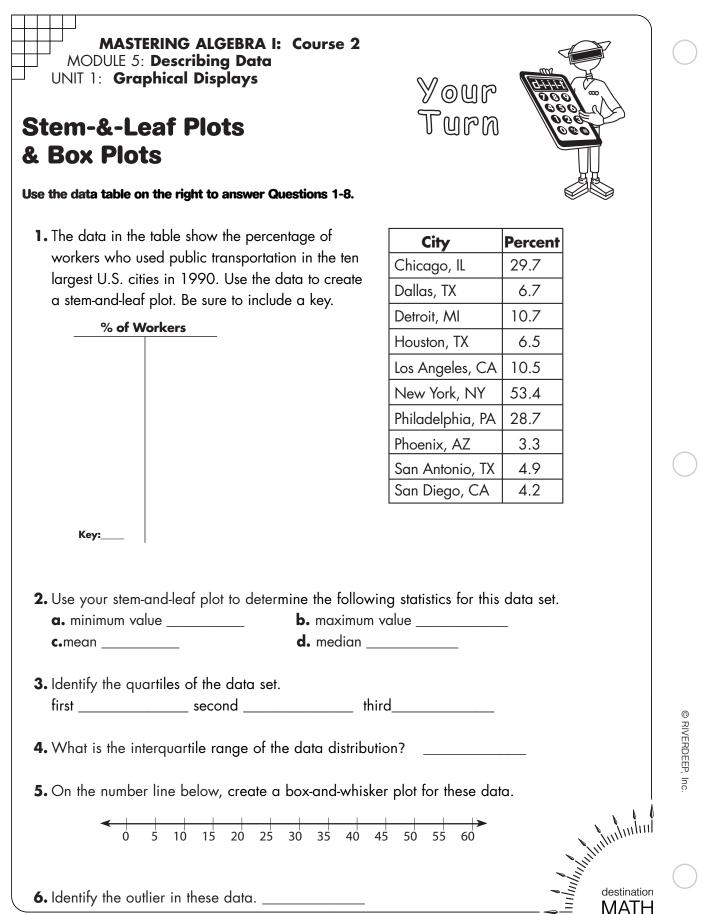

MODULE 4: Algebraic Expressions & UNIT 2: Rational Expressions, Equational Functions	ns & Functions Student	
As you work through the tutorial, complete the followir	LOGBOOF ng questions or sentences.	۶ ۲
1. A is an equation rational expressions.		Key Words: Rational function Hyperbola Asymptote Continuous funct
2. A plane curve represented by an equation suc	ch as $y = \dot{x}$ is called a	Discontinuous function
3. If zero is not included in the domain or the ro graph of the function cannot intersect the	•	 Learning Objectives: Graph the function <i>f(x)</i> = Identify the
 4. Use symbols to complete these expressions fo As x → 0⁺, y As x → 0⁻, y 	r the function $y = \frac{1}{x}$.	 domain and range of f(x) = Identify the equations of the asymptotes and the invorce of the in
As $x \rightarrow +\infty$, y As $x \rightarrow -\infty$, y		the inverse of $f(x) = \frac{1}{x}$. • Examine the effects of
5. A line that a hyperbola approaches but never of the hyperbola.	r intersects is called an	parameters <i>a</i> a <i>b</i> on the graph $f(x) = \frac{a}{x-b}$
6. The domain of $y = \frac{1}{x}$ does not include 0, but both sides of 0. Therefore the graph is a		х-р
7. For any rational function $y = \frac{a}{x-b}$, b repression and $x =$		
8. For any rational function $y = \frac{a}{x-b}$, changin hyperbola to shift	g the value of <i>b</i> causes the	
9. For any rational function $y = \frac{a}{x - b}$, the paratoward or away from the	ameter <i>a</i> shifts the hyperbola	a lunhulud


61



Rational Equations	Student	
	Logboo	k III
s you work through the tutorial, complete the following q	uestions or sentences.	Key Words:
1. To solve $\frac{3}{x} = \frac{1}{x-2}$ for x, first find the excluded volume $\frac{3}{x} = \frac{1}{x-2}$.	lues, then find a	Rational equation Lowest common denominator Extraneous solutio
2. What is the solution of the rational expression $\frac{3}{x}$	$=\frac{1}{x-2}?$	Learning Objectives:
3. The graphs of $y = \frac{3}{x}$ and $y = \frac{1}{x-2}$ intersect at a x-coordinate is	a point whose	 Solve a rational equation by multiplying by the LCD.
4. The formula for work is \times	=	 Analyze and solv a work problem. Analyze and solv
5. What is the lowest common denominator of $\frac{5}{7}$ ar	nd $\frac{5}{x}$?	a uniform motion problem. • Determine if a
6. If $d = rt$, which equation expresses time in terms	of distance and rate?	solution of a rational equation is extraneous.
7. An is a solution of equation that is not a solution of the original ratio		
8. Before solving a rational equation, identify the of the variable.		
9. One way to solve a in the equation by a common nonzero denomina		
		Indudind
		Lin.





67

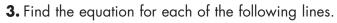
MODULE 5: Describing Data UNIT 1: Graphical Displays Stem-&-Leaf Plots	Student
& Box Plots As you work through the tutorial, complete	the following questions or sentences.
 Statistics is the mathematical study and of data. 	of the,, Key Words: Statistics Data Mean
2. A in a data set.	is a type of bar graph that represents Outlier Quartiles distribution
3. A graphical display made up of th and	e numbers in a distribution is a Stem-and-le Range of da Skewed data Box plot
4. The range of data is the between the maximum and minimu	
	metrical is called Learning Objectives: • Create and analyze a
7. Quartiles are the three numbers the	and-leaf p
8. The median of the data is the	Create a b Analyze th informatio box plot.
9. A of data into quartiles.	is a graphical display that divides a set
10. The interquartile range is the differ quartiles of a distrib	
11. An is an extreme a	or uncharacteristic value in a data set.

70

 s you work through the tutorial, complete the following statements and questions. 1. A scatter plot can be used to represent all of the data in	Scatter Plots & .inear Best-Fit Graphs	Student Logbool	
 1. A scatter plot can be used to represent all of the data in	•	atements and questions.	Key Words:
 2. A line that best represents the relationship between the points in a scatter plot is called a line. 3. A best-fit line drawn on a scatter plot that uses a three-point summary based on the medians of the variables in three groups of data is called a error line. 4. Does the line M1M3 represent all of the data? Why or why not? 5. The best-fit median-median line is to both the line M1M3 and the line through M2, and must lie of the distance from M1M3 and of the distance from the line through M2. 6. A best-fit line can suggest only a general in the relationship between two variables. 		data in	Data Median Outlier Scatter plot
 3. A best-fit line drawn on a scatter plot that uses a three-point summary based on the medians of the variables in three groups of data is called a			Median-median lin
 3. A best-fit line drawn on a scatter plot that uses a three-point summary based on the medians of the variables in three groups of data is called a	plot is called a	_ line.	-
 4. Does the line M₁M₃ represent all of the data? Why or why not? 5. The best-fit median-median line is to both the line M₁M₃ and the line through M₂, and must lie of the distance from M₁M₃ and of the distance from the line through M₂. 6. A best-fit line can suggest only a general in the relationship between two variables. 	based on the medians of the variables in three gro	, ,	best-fit line through a set of points in a scatt
 5. The best-fit median-median line is to both the line M1M3 and predicted values using a best-fit line. M1M3 and of the distance from the line through M2. 6. A best-fit line can suggest only a general in the relationship between two variables. 	4. Does the line M_1M_3 represent all of the data?	Why or why not?	 Use a best-fit lin to predict a futu value.
relationship between two variables.	and the line through M ₂ , and must lie	of the distance from	values using a
7. The equation of a best-fit line for a set of data can be used to make		in the	
	7. The equation of a best-fit line for a set of data car	n be used to make	
, ,			
、 (
、			
、			
			destinat

Your

Turn


MASTERING ALGEBRA I: Course 2 MODULE 5: Describing Data UNIT 1: Graphical Displays

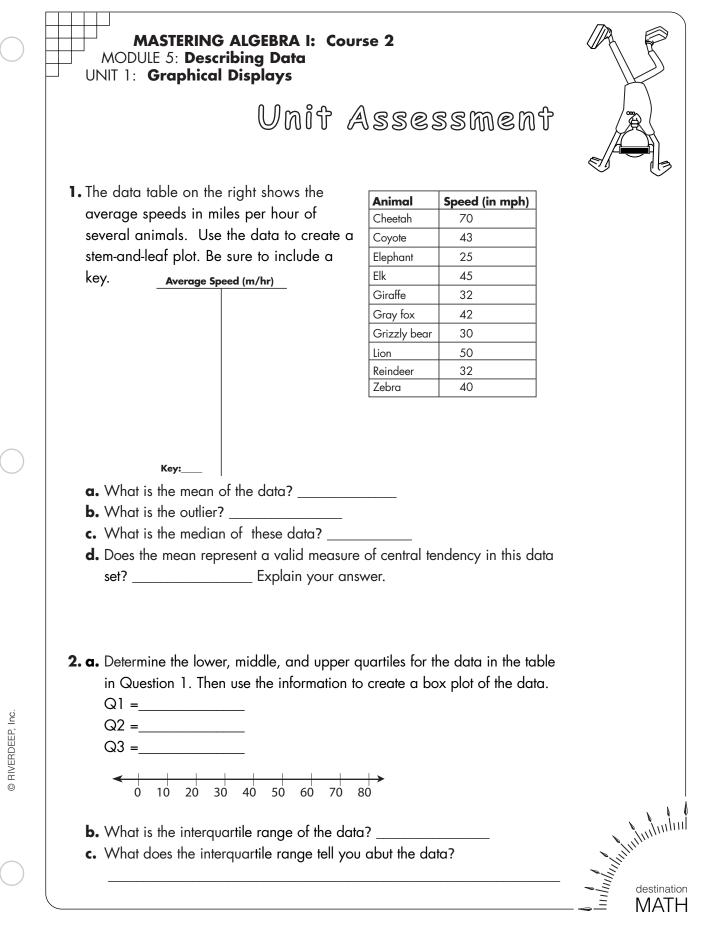
Scatter Plots & Linear Best-Fit Graphs

 The table on the right lists the winning times for men's 100-meter freestyle swim during the Olympic Games from 1924 to 1988. Graph the relationship as a scatter plot. Be sure to label the axes and put the independent variable on the vertical axis.

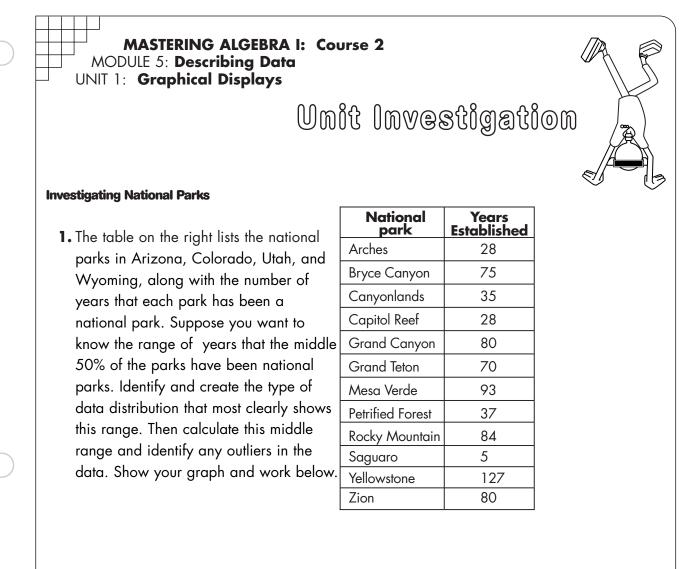
 Divide the data on your graph into three equal groups. Find the median coordinates for each group and label these points M₁M₂ and M_{3.}

Year	Winning Time(s) (seconds)
1924	59.0
1928	58.6
1932	58.2
1936	57.6
1948	57.3
1952	57.4
1956	55.4
1960	55.2
1964	53.4
1968	52.2
1972	51.22
1976	49.99
1980	50.40
1984	49.80
1988	48.63

a. The one through point M₁ and M₃ _____


72

- **b.** The line through M_2 that is parallel to M_1M_3 _____
- c. The median-median best-fit line _____
- Use the equation for the median-median line to predict the winning time in 1992.


© RIVERDEEP, Inc

- Mathalia had

destination

Uni	f A	SSESSM	ent	
State whether the following types of graphic one-dimensional or two-dimensional data.	al displo	ny are used to displo	av Al-P	
a. Stem-and-leaf plot				
b. Box plot c. Scatter plot				
The table on the right shows the life expectancy in years for women from 1930	Year	Life Expectancy for Women (in years)		
to 1990. Without graphing the data,	1930	61.6		
answer the following questions.	1935	63.9		
a. Divide the data into three roughly equal	1940	65.2		
groups of four, five, and four values, and find the coordinates of M ₁ M ₂ and M _{3.}	1945	67.9		
,,,	1950	71.1		
b. Calculate the slope of the median-median	1955	72.8		
best-fit line.	1960	73.1		
c. What is the equation for the median	1965	73.7		
median best-fit line?	1970	74.8		
	1975	76.6		
d. Use the median-median line to predict the life expectancy for women in 1995.	1980	77.4		
	1985	78.2		
	1990	78.8		
			and	Į.
			N. Julu	1

and the function of the second destination MATH

Unit Investigation 2. Using the table in Question 1, identify and create the type of data distribution that most clearly shows the number of years since each national park was established. Identify the maximum and minimum years, and explain whether or not the mean of the data represents the best measure of central tendency in the data set. Show your work below. **3.** The table on the right lists the total number Number of Year Visitors of visitors to all national parks during a 1990 57,700 45-year period. Create a graph that shows if there is a general trend in the data. 1985 50,000 Using what you have learned about the 60,200 1980 median-median best-fit line, predict the 1975 58,800 number of visitors for the year 2000. 45,879 1970 Explain whether your prediction is 36,566 reasonable. Show your work below. 1965 26,630 1960 18,830 1955

© RIVERDEEP, Inc

destination MATH

Salutalandad

13,919

4,538

1950

1945

1.1 Rational & Irrational Numbers

Defining Real Numbers

<u>Student Logbook</u>

- 1. integers; 0
- 2. terminates; repeats
- 3. two; number
- 4. ratio; integers
- 5. terminating; repeating
- 6. rational; irrational
- **7.** real
- 8. root
- 9. radical

Your Turn

1. The following answers are samples **a.** $-\frac{12}{2} -\frac{18}{3}; -\frac{30}{5}$ **b.** $\frac{2}{10}; \frac{-3}{-15}; \frac{4}{20}$ **c.** $\frac{16}{6}; \frac{-24}{9}; -\frac{32}{12}$ **d.** $\frac{9}{4}; \frac{-9}{-4}; \frac{18}{8}$ 2. **a.** 0.375 **b.** 0.222 ... **c.** 3.5 **d.** 0.714285 ... 3. 1.222343 4. Sample answers: $\sqrt{7}$, 5.1682032412 ... 5. **a.** 2.646 **b.** 5.916 **c.** 4.690 **d.** 3.742 **i.** $\frac{a}{10}$ **c.** $\frac{b}{10}$ **i.** $\frac{1}{10}$ **i.** $\frac{1$

Working with Radicals

- <u>Student Logbook</u>
 - **1.** 3.14

© RIVERDEEP, Inc.

- 2. d, the depth of the water
- **3.** radicand
- **4.** 1, 4, 9, 16, 25

5.
$$\sqrt{a^2} = a$$

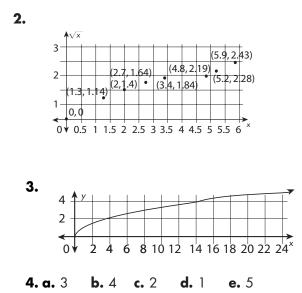
6. non-negative square root

- **7.** $\sqrt[3]{a \times b}$ **8.** $5\sqrt{10}$ **9.** $\frac{\sqrt{a}}{\sqrt{b}}$
- 10. rationalize; denominator; rational
- 11. simplest; like

Your Turn

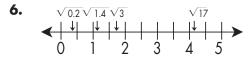
1. a. 9; 9 **b.** 625; 25 **c.** 144.; 12 **2.** 121, 144, 169, 196, 225 **3. a.** $4\sqrt{10}$ **b.** $30\sqrt{3}$ **c.** $-\frac{1}{2}\sqrt{10}$ **4.** $-96\sqrt{7}$ **5.** $\frac{\pi}{6}$ **6. a.** $\frac{\sqrt{6}}{6}$ **b.** $\frac{\sqrt{33}}{11}$ **c.** $\frac{\sqrt{14}}{7}$ **7. a.** $\frac{16}{5}$ **b.** $5\sqrt{5}$ **c.** $\frac{2\sqrt{3}}{3}$ **8.** $16\sqrt{2}$ **9.** $2\sqrt{3}$ seconds

The Square Root function


<u>Student Logbook</u>

- 1. \sqrt{x}
- 2. Sample answer: The slope formula can be used to show that slopes between any two consecutive points are not equal.
- **3.** Because for each first coordinate there is one and only one second coordinate.
- 4. interpolate; domain
- 5. extrapolate; observed
- 6. non-negative real numbers
- 7. non-negative real numbers
- 8. parameter
- 9. steepness; quadrant

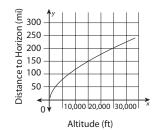
Your Turn


1.

x	0	1.3	2.0	2.7	3.4	4.8	5.2	5.9
\sqrt{x}	0	1.14	1.41	1.64	1.84	2.19	2.28	2.43

Unit Assessment

- 1. a. rational, terminating decimal
 - **b.** rational, can be written as $\frac{25}{14}$
 - **c.** irrational, nonterminating and nonrepeating decimal (*π* is irrational)
 - d. rational, repeating decimal
 - e. rational, can be written as -3
 - **f.** irrational, nonterminating and nonrepeating decimal (2.8284 ...)
 - g. rational, repeating decimal
 - **h.** irrational, nonterminating and nonrepeating decimal
- 2. sometimes
- 3. always
- **4.** Irrational; by the Pythagorean theorem, the length of the hypotenuse is given by the square root of $4^2 \times 5^2$, or the square root of 41. No rational number can be squared to equal 41, so the length of the hypotenuse is given by an irrational number.
- **5.** b and d



8. a.
$$5\sqrt{3}$$
 b. 0.06 c. $5\sqrt{17}$ d. $14\sqrt{7}$
e. $4\sqrt{3}$ f. $2\sqrt{3}$ g. $3\sqrt{5}$
h. $30\sqrt{3}$ i. $3\frac{\sqrt{5}}{5}$ j. $\sqrt{5}$

1.

10. a. 4 **b.** 3 **c.** 2 **d.** 5 **e.** 1

Unit Investigation

- Answer will vary. (0, 0), 5,000, 86.26 ...) (15,000, 149.41...), (25,000, 192.89 ...), (35,000, 228.24 ...)
- **3.** The distance to the horizon when the plane is on the ground
- 4. about 210 miles
- 5. about 7,000 feet
- 6. about 27,000 feet
- The distance to the horizon decreases from about 230 miles to 190 miles.

2.1 Polynomial Arithmetic

Working with Powers

Student Logbook

- 1. exponent; base
- **2.** 1
- **3.** $\frac{1}{a^n}$
- 4. reciprocal; opposite
- 5. base
- 6. a^{r + s}; integers
- 7. a^{r s}; integers
- 8. $a^{r \times s}$; integers
- **9.** $a^n \times b^n$; integer
- **10.** $\frac{a^n}{b^n}$; integer

Your Turn

1. a. 3^{2} **b.** 3^{-2} **c.** 3^{4} **d.** 3^{2} **2.** 1 **3. a.** b^{5} **b.** $-3c^{2}$ **c.** 25^{6} **d.** $\frac{1}{3}$ or 3^{-1} **e.** $32x^{15}y^{20}$ **f.** $\frac{625x^{4}}{16y^{4}}$ **4.** Mercury: 5.8×10^{7} Earth: 1.5×10^{8} Mars: 2.3×10^{8} Saturn: 1.4×10^{9} Pluto: 5.9×10^{9} **5.** $4 - 4 - 10^{19}$

5. 1.4×10^{12}

Transforming Equations Using Multiple Operations

Student Logbook

1. x²

- **2.** axⁿ ; real number; variable; nonnegative
- 3. ploynomial
- 4. trinomial; 3 monomials or 3 terms
- 5. left; right; descending order
- **6.** left; right; ascending order
- 7. nonzero value; simplify; identity
- 8. Their exponents are different.
- 9. Students' answers will vary.

<u>Your Turn</u>

© RIVERDEEP, Inc.

 No. In the definition of a monomial, a term of the form axⁿ, n is a nonnegative integer. Since n in the expression 2x⁻³ is negative, this expression is not a monomial.

2. a. $2x^2 + x_i$ binomial

b. $4s^{23} - 7s^{17} - s$; trinomial

3. a.
$$2x^3 + 10x^2 - 2x + 12$$

b.
$$-2b^4 - b + 4$$

c.
$$7c^3 + 6c^2 - 2$$

4. a. $-3a + 11a^3$

- **b.** $3 x 6x^2 + 8x^3$
- **c.** $b + 3b^2 b^3$
- **5. a.** $2n^2 + 4n$

b. $3n^2 + 7n + 3$ **c.** $4n^2 + 9n + 3$

Multiplying Polynomials

Student Logbook

- **1.** *n* + 1
- **2.** distributive; $(n + 10)n + (n + 10) \times 1$
- 3. sum; products
- 4. FOIL stands for First, Outer, Inner, Last: multiply the first terms of each binomial; multiply the outer terms; multiply the inner terms, multiply the last terms.
- 5. substitute; identity
- **6.** $a^2 + 2ab + b^2$
- **7.** $a^2 2ab + b^2$
- **8.** $a^2 b^2$

Your Turn

1. a.
$$(n + 2)(n + 8); n^2 + 10n + 16$$

b. $n(n + 8); n^2 + 8n + 0$
c. $(n - 1)(n + 8); n^2 + 7n - 8$
d. $(3n + 1)(n + 8); 3n^2 + 25n + 8$
2. $(n + 3)(4n - 2); 4n^2 - 2n + 12n - 6;$
 $4n^2 + 10n - 6$
3. a. $9b^2 + 12b + 4; (3(-2)+2)^2 = 9(-2)^2$

- **3. a.** $9b^2 + 12b + 4$; $(3(-2)+2)^2 = 9(-2)^2 + 12(-2) + 4$; 169 = 169
 - **b.** $25y^2 30y + 9$; $(5(-2)-3)^2 = 25(-2)^2$ - 30(-2) + 9; 169 = 169

5. $2n^2 + 16n$; Sample answer. The area of one panel is n(n + 8) or $n^2 + 8n$. This multiplied by 2 equals $2n^2 + 16n$.

Unit Assessment

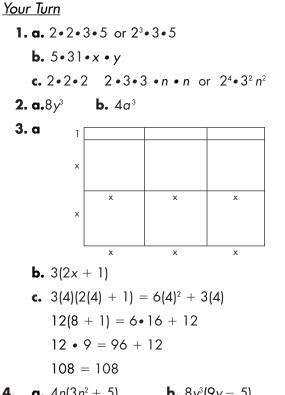
1. *b* and *c*
2. a.
$$-32a^{3}$$
 b. $5r^{6}$
c. 4^{-4} , or $\frac{1}{4^{4}}$ or $\frac{1}{256}$ **d.** $16y^{12}$
e. $8s^{3n+6}$ **f.** $\frac{64r^{3}}{343s^{3}}$
3. 3.8×10^{-2}
4. a. $7n^{2} + 10n - 5$

b.
$$-2n^2 + 3n + 15$$

c. $n^2 - 15n - 14$
d. $9n^2 + 24n + 7$
5. $(2n + 3)(3n - 4)$
 $= 6n^2 - 8n + 9n - 12$
 $= 6n^2 + n^2 + 2$
6. d
7. $(3-5)(3+5) = 3-25$
 $(-2)(8) = 9-25$
 $-16 = -16$
8. a. $n^2 - n$
b. $3n^2 + 13n + 4$
c. $2n^2 + 14n + 4$

Unit Investigation*

- Students' diagrams will vary. Dimensions should be reasonable.
- **2.** Students' diagrams will vary. Dimensions should be reasonable.
- **3.** Students' diagrams will vary. Area and dimensions should be reasonable
- 4. Students' answers will vary.


2.2 Factoring Polynomials

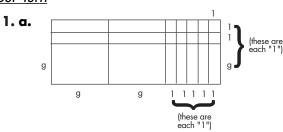
Finding Common Factors

<u>Student Logbook</u>

- 1. positive integers; 1; itself
- 2. It has only one factor (itself).
- 3. composite number
- 4. prime factors; product
- **5.** Factor the monomials. The greatest common factor of the variable terms is equal to the variable term with the lower exponent.
- 6. degree
- **7.** 12*n*²
- 8. the product of two or more polynomials
- 9. highest; monomial

*This problem is appropriate for group work, as well as individual assignments.

4. a. $4n(3n^2 + 5)$ **b.** $8y^3(9y - 5)$ **c.** (x + 2)(x + 5) **d.** 3(m + 7)(m + 2)


Factoring Quadratic Trinomials

Student Logbook

- 1.24;10
- **2.** (x + 4)(x + 6)
- 3. quadratic term
- 4. linear term
- 5. constant term
- 6. Yes. It is a form $ax^2 + bx + c$; a, b, c are 1, 10, 24 which are real numbers and a $\neq 0$.
- 7. opposites
- 8. (y 3)(y 4)
- 9. (2r + 3)(r + 2)

10.
$$(2n + 5)(3n - 2)$$

Your Turn

b.
$$(g + 2)(2g + 5)$$

c. $2(2)^2 + 9(2) + 10 = (2 \cdot 2 + 5)(2 + 2)$
 $8 + 18 + 10 = 9 \cdot 4$
 $36 = 36$
2. a. $s^2 + 5s - 1$
b. s^2
c. $5s$
d. -1
3. a. $(x + 2)(x + 3)$
b. $(d - 8)(d + 4)$
c. $(2p + 1)(p + 3)$
d. $(3y - 4)(y - 1)$
e. $3(f + 2)(f - 3)$

Special Cases

Student Logbook

- **1.** (a + b)²
- 2. difference; two squares
- **3.** (2x + 3)(2x 3)
- **4.** (a + b)(a b)
- 5. (5k + 12)(5k 12)
- 6. yes; $(x^2)^2 = x^4$ and $8^2 = 64$
- 7. $(x^2 8)(x^2 + 8)$
- 8. prime
- 9. a. common factors; distributive
 - **b.** perfect square trinomial; difference of two squares
- 10. prime

Your Turn

1.

Factored form	Trinomial expression	Special case
(x + 9) ²	x ² + 18x + 81	perefect square trinomial
(2x + 10) ²	4x ² + 40x + 100	perefect square trinomial
(x - 3) ²	x ² - 6x + 9	perefect square trinomial
(x + 5) (x - 5)	x ² - 25	difference of two squares
(x + 7) (x - 7)	x ² - 49	difference of two squares
prime, not factorable	x ² + 81	sum of two squares
(2x + 20) ² or 4(x + 10) ²	4x ² - 80x + 400	perefect square trinomial

- **2. a.** $(a b)^2$ is the square of a difference and is equal to $a^2 - 2ab + b^2 \cdot (a^2 - b^2)$ is the difference of squares and factors as (a + b)(a - b).
 - **b.** Solutions will vary. Example: If a = 1 and b = 2; $(a b)^2 = (1 2)^2 = 1$ and $(a^2 b^2) = 1^2 2^2 = 1^2 = -3$

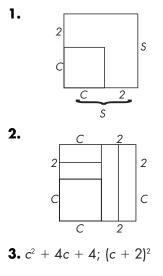
Unit Assessment

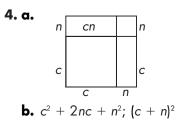
 The next step would be to eliminate all multiples of 3 from the table greater than 3, then multiples of 5 greater than 5, etc. The numbers remaining would not be multiples of any numbers preceding them, other than themselves and 1, and are therefore prime.

2. $24 = 2 \cdot 2 \cdot 2 \cdot 3$ or $2^3 \cdot 3$

- **3. a.** Solutions will vary. Example: 8 and 12, GCF is 4
 - **b.** Solutions will vary. Example: 15 and 18, GCF is 4

4.*b*^₄ **5.**


Terms	Greatest common factor
16, 24	8
64m, 32m, 96m	32m
42x ² , 18x ³	6x ²


6. a.
$$(x + 3)(x + 1) = x^2 + 4x + 3$$

b. Solutions will vary. Example: Let
$$x = 5$$
,
 $(5 + 3)(5 + 1) = 5^2 + 4 \cdot 5 + 3$
 $8 \cdot 6 = 25 + 20 + 3$
 $48 = 48$

7. a.
$$(g - 10)(g + 2)$$
b. $(k + 6)^2$ c. $(p - 8)(p + 2)$ d. $(2x + 3)(2x + 5)$ e. primef. $(4a - 5)(4a + 5)$ 8. a. $8(p + 2)$ b. $4(p + 4)$ c. $4(3d + 4)$ d. $8(x + 2)(x - 2)$

Unit Investigation

- 5. a perfect square trinomial
- 6. Floor plans will vary.
- 7. Answers will vary. Example: If there is 6 feet of tile on one wall and 1 foot of tile on the other, then $x^2 + 7x + 6 = (x + 6)(x + 1)$
- **8.** The factored form of the area gives the dimensions of the room, and shows the length of the carpet region and the length of the tiled region.

3.1 Graphing Quadratic Functions & Equations

Graphing Parabolas

<u>Student Logbook</u>

- 1. a second degree polynomial function
- **2.** x-value; y-value
- **3.** up
- 4. down
- **5.** the least value of y on the graph of the parable
- **6.** the greatest value of y on the graph of the parable
- 7. axis of symmetry

8. x = 0

9. vertex

Your Turn

- **1. a.** *a*; c
- 2. a. concave down
 - **b.** concave up
 - c. concave up
- **3. a.** *b* and c
 - **b.** a
- **4.** c
- Students' graphs should depict a parabola in quadrants I and II whose vertex is the origin.

The curve is concave up and should pass through points (1, 2), (-1, 2), (2, 8), (-2, 8), (3, 18), (-3, 18), and so on.

- **a.** domain: $x = all real numbers; range: <math>y \ge 0$
- **b.** *x* = 0
- c. the origin, (0, 0)
- d. concave up
- e. y = 0 (minimum)

Analyzing Properties of Parabolas

<u>Student Logbook</u>

- 1. the y-intercept
- 2. down; vertex; 1,000
- 3. 0; real numbers
- 4. incomplete; 0
- 5. midpoint; h
- **6.** 240.1
- **7.**7
- 8. parabola; y-axis; vertex
- 9. x-intercepts; 0

<u>Your Turn</u>

- **1. a.** –5
 - **b.** 0
 - **c.** 67
- **2.** b, c
- **3.** Students' parabolas should open upward, the least value of y (the minimum) should be -3, and the parabola should be centered around the axis of symmetry, x = -2. The parabolas may have any width, provided these conditions are met.
- **4.** (8, 15)
- **5. a.** 400
 - **b.** the height of the cliff, or the distance between the cliff and the ground below it.

Solving Quadratic Equations by Graphing

<u>Student Logbook</u>

- 1. trajectory
- 2. quadratic; linear; 0; -6
- 3. vertex

4. root; solution

5. horizontal intercepts

6. real roots

- **7.** 5.6
- 8. real root

9. x-intercept

<u>Your Turn</u>

1. a. 5

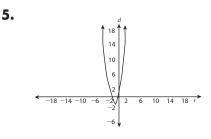
b. 12 feet (at d = 10)

c.

				h											
-															
_			2	6											
			-	Ŭ											
				-											
_				5											
_															
-			-1	0						K					
-	-					\succ			-						
-				5	۲										
-	-					-	-	-	-	-		-			-
-	<u> </u>		-		-	÷.,	-	1.0	-	-	2		2	-	↦
-1	υ	-	>				<u>}_</u>	10		Þ.	2	μ	2	Þ	d
			-	-5											
_				Γ,	L										

Since d cannot be negative in this problem, only the curve in Quadrant 1 and the prints (0, 5) and (25.0) correspond to the ball's trajectory.

2.

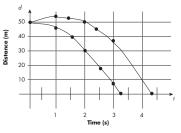

Equation	Roots	Concavity	Max/min
$h = 0, 5d^2 + 1$	0	Concave up	1
$y = 3x^2 + 6x + 1$	2	Concave down	4
$d = -1.9t^2$	1	Concave down	0
$y = 4x^2 + 4x - 35$	2	Concave up	-36

Unit Assessment

- **1. a.** $3x^2$
 - **b.** 5*x*
 - **c.** –7

© RIVERDEEP, Inc.

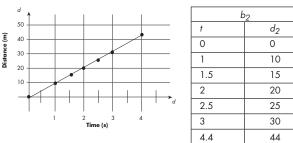
- **d.** The equation is of the form $y = ax^2 + bx + c$.
- e. the coefficient of the quadratic term, 3
- f. The sign of the quadratic term. If it is positive, the parabola is concave up; if it is negative, the parabola is concave down.
- g. the constant term, -7
- 2. a. maximum b. minimum c. minimum
- **3. a.** $y = x^2 1$ **b.** $y = -x^2 + 1$
- **4. a.** 2 real roots **b.** 2 real roots
 - c. 0 real roots d. 1 real roots



6. *t* = 0 to 5 inclusive

7. 0 to 70 inclusive

Unit Investigation


1.a. and b.

- b₂; The ball that was dropped hit the ground after 3.2 seconds, and the ball that was thrown hit the ground after 4.4 seconds.
- d. About 56 meters
- e. Between 1 and 1.5 seconds
- **f.** 50 meters
- a. The initial velocity (speed) of the ball when it was thrown.
 - **b.** The height of the cliff above the ground (50 ft.).
 - **c.** 0 m/s

3.
$$b_1 = 0$$
 and $b_2 = 44$

5. The ball fell at a constant speed: 10 m/s.

3.2 Solving Quadratic Equations Using Algebra

Factoring & The Zero Product

<u>Student Logbook</u>

- 1. Zero product theorem
- **2.** two
- 3. horizontal intercepts or x-intercepts
- 4. axis of symmetry, vertex
- **5.** 0, 0
- **6.** |
- **7.** 22.2
- 8. double root
- 9. x-intercepts; parabolic function

Your Turn

1. **a.** two **b.** $0 = 0.25x^2 - 4$ 0 = (0.5x + 2)(0.5x - 2) 0 = 0.5x + 2 or 0 = 0.5x - 2 -2 = 0.5x or 2 = 0.5x -4 = x or 4 = x2. x(x + 4)3. **a.** 0, 2 **b.** (1, 3) **c. 4. a.** (6x + 2) (6x + 2), or 4(3x + 1)^2 **b.** $x = -\frac{1}{3}$ **c.** 1

The Square Root Method & Completing the Square

<u>Student Logbook</u>

- 1. square root property
- **2.** a + (-a) = 0, -(a) + a = 0
- **3.** sum
- 4. perfect square trinomial
- **5.** 3; –13

6. 4

- 7. $x 2 = \sqrt{3}$ or $x 2 = -\sqrt{3}$ (or $(x-2)^2 = 3$)
- 8. square root property
- **9.** completing; square
- **10.** irrational

Your Turn

1. two **2. a.** $x = \pm 3$ **b.** $x = \pm 1$ **c.** $x = \pm 2$ 3. b² **c.** $\frac{9}{4}$ **4. a.** 36 **b.** 100 5. $x^2 + 4x - 5 = 0$ $x^{2} + 4x = 5$ $x^2 + 4x + 4 = 5 + 4$ $(x + 2)^2 = 9$ $x + 2 = \pm 3$ x + 2 = 3 or x + 2 = -3x = 1 or x = -5**6.** $x^2 - 10x + 18 = 0$ $x^2 - 10x + 25 = 18 + 25$ $(x - 5)^2 = 7$ $x-5 = \pm \sqrt{7}$ $x = 5 + \sqrt{7}$

The Quadratic Formula

<u>Student Logbook</u> **1.** x = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ **2.** 2; 8; -13 **3.** $2\sqrt{42}$ **4.** real

5. b2 – 4ac

6. radicand

7. no real

8. one real

9. two real

<u>Your Turn</u>

1. a. square root property b. completing the square c. zero product theorem 2. $g = \frac{-h \pm \sqrt{h^2 - 4f}}{2f}$ 3. a. $x^2 + 12x - 18 = 0$; 1; 12; -18 b. $3y^2 - 2y + 51 = 0$; 3; -2; 51 c. $8y^2 - 2y + 27 = 0$; 8; -2; 27 d. $x^2 + 5x - 2 = 0$; 1; 5; -2 4. $x = -b \pm \sqrt{b^2 - 4ac}$ $\frac{-(-5) \pm \sqrt{(-5)^2 - 4(5)(1)}}{2(5)}$ $x = \frac{5 \pm \sqrt{25 - 20}}{10}$

$$x = 0.5 + \sqrt{5}$$
 or $x = 0.5 - \sqrt{5}$
10

Unit Assessment

- a. The equation has two solutions. This makes sense because he rabbit touches the ground (x = 0) at two points, the point that it jumps from and the point where it lands.
 - **b.** *x* = 0 or *x* = 2
 - c. distance = 2 ft.

d. $\frac{1}{4}$ of a foot or 3 inches

2. m = 9 of m = -9

3.
$$s = 0$$
 or $s = 99$

4.
$$\binom{b}{2}^2$$
 or $\frac{b^2}{4}$

5. $x^2 + 18x - 19 = 0$

 $x^2 + 18x = 19$

$$x^{2} + 18x + 81 = 19 + 81$$

$$(x + 9)^{2} = 100$$

$$x + 9 = \pm \sqrt{-100} = \pm 10$$

$$x + 9 = 10 \text{ or } x + 9 = -10$$

$$x = 1 \text{ or } x = -19$$
6.

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2} = \frac{-7 \pm \sqrt{29}}{2}$$

$$x = \frac{-7 \pm \sqrt{49 - 20}}{2} = \frac{-7 \pm \sqrt{29}}{2}$$

$$x = -3.5 + \frac{\sqrt{29}}{2} \qquad x = -3.5 - \frac{\sqrt{29}}{2}$$

7. The discriminant tells you how many solutions here are; if they are real or not; and if they are real, if the are rational or irrational.

8.

Quadratic equation	Discriminant	Nature of roots
a. $5x^2 + 6x + 5 = 0$	-64	not real
b. $6x^2 + 6x + 7 = 0$	-132	not real
c. $2x^2 + 8x + 2 = 0$	48	two irrational
d. $8x^2 + 3x - 4 = 0$	137	two irrational

9. a and b

b.

Unit Investigation

1. a. $h = -4.9t^2 + 60$

t	0	1	2	3	4
h	60	55	29	16	-18

c. 3 and 4. The value of h, when t is 3, is positive. One second later, the value of h is negative. So, somewhere between 3 and 4, the value of h must have been 0, the value when the boulder strikes the ground.

d.

e. 60

f. Solve the equation for t when h equals 0.

$$-4.9t^{2} + 60 = 0$$

$$60 = 4.9t^{2}$$

$$600 = 49t^{2}$$

$$\frac{600}{49} = t^{2}$$

$$10\sqrt{6} = t$$

$$3.5 \stackrel{7}{\approx} t$$

2. a. 2 and 2. the initial position of the ball occurs when x = 0. therefore, since y is the height in feet above each player's shoulder, when x equals 0, y equals 2 in each equation.

b.

x	0	5	10	15	20	25	30
уА	2	6	8	8	6	2	-4
УB	2	6.7	8.8	8.5	5.6	0.3	-7.6

	10		++++		++++		+++		++
-	10-1 y								
	8		K						++
			KИ			Playe	rB .		++-
	-+++	H H K	ИН				+++		++-
	-+++	$+ \nu$	1			\mathbf{N}	+++		++
	-+++	HAA				N.	+++		++
	6	1111				-W	+++		++
	-+++	1/1							
	-+++	11 11				1 X	X I		
		7					11		
	//						$\overline{\Lambda}$		
	°1//						$ \rangle$		
							1		\square
							+N		
							11	I V PL	ster A
	2						+++	<u>NI NI</u>	++
	-++-						+++	++++	++
	-+++						+++	1 1	++
	-++-								
	-+++								Ϋ́
	0	5		10	15	2	0	25	

- **d.** Player B
- e. Player A: 26.9 and Player B: 25.2
- **f.** Solve he equation when y = 0.

$$-0.04x^{2} + x + 2 = 0$$

$$x = -1 \pm \sqrt{1^{2} - 4(-0.04)}(2)$$

$$x = -1 \pm \sqrt{1.32}$$

$$-0.08$$

$$x \approx -1 \pm 1.15$$

$$-0.08$$

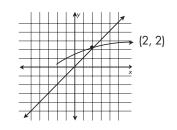
$$x \approx \frac{2.15}{0.08} \approx 26.9$$

g. Player A

4.1 Radical Equations & Functions

Solving Radical Equations

Student Logbook


- 1. radical equation
- **2.** a² = b²
- **3.** square root; $\frac{1}{2}$
- 4. radical;square
- **5.** If the graphs of the functions intersect, then the x-coordinate of the point of intersection is the solution of the radical equation.
- 6. extraneous root
- **7.** x^{0.5}
- 8. true
- 9. extraneous root(s)

Your Turn

- **1.** x = 25
- No. The symbol √m indicates a principal, or non-negative root. Therefore √m cannot be a negative.

3.
$$\sqrt{r-5} - 8 = 0$$

 $\sqrt{r-5} - 8 + 8 = 0 + 8$
 $\sqrt{r-5} = 8$
 $[(r-5)^{\frac{1}{2}}]^2 = 8^2$
 $r-5 = 64$
 $r = 69$
Check: $\sqrt{69} - 5 - 8 = 0$
 $\sqrt{64} - 8 = 0$

4. a. one solution:

b.
$$\sqrt{x + 2} = x$$

 $x + 2 = x^2$ $\rightarrow [(x + 2)^{\frac{1}{2}}]^2 = x^2$
 $0 = +x^2 - x - 2 = (x + 1)(x - 2)$
 $0 = x + 1 \text{ or } 0 = x - 2$
 $-1 = x \text{ or } 2 = x$
c. $x = 2$
d. $x = -1$

The Inverse of the Square Root Function

Student Logbook

1. one-to-one

2. inverse

3. interchange; function; inverse

4. f⁻¹ (x)

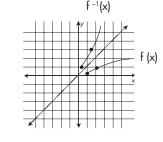
5. range

6. domain

7. *y* = *x*

8. function; 2

9.
$$y = \pm \sqrt{x}$$


10. domain

Your Turn

 Yes. For every point on the graph, each value of y. is paired with one and only one value of x, and each value of x is paired with one and only one value of y.

2. a.

IVERDEEP, Inc.

- **b.** $x \ge 1$.
- **c.** $f(x) \ge 0$.

d. $f^{-1}(x) = x^2 + 1$

e. $x \ge 0$.

f. See graph above

g. See graph above;
$$y = x$$

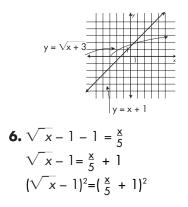
Unit Assessment 1. $\sqrt{a} = 12$; $(\sqrt{a})^2 = 12^2$. a = 144 $\sqrt{144} = 12$

$$12 = 12^{2}$$
2. $\sqrt{k} + 2 = 0; \ \sqrt{k} = -2.$ no solution
 $\sqrt{(-2)} = 2$
 $\sqrt{(-2)^{2}} = 2$
 $-2 \neq 4$
3. $\sqrt{d - 15} - 5 = 0; \ \sqrt{d - 15} = 5$
 $(\sqrt{d - 15})^{2} = 5^{2} \ d - 15 = 25 \ d = 40$
 $\sqrt{40 - 15} - 5 = 0$
 $\sqrt{25 - 5} = 0$
5 - 5 = 0
4. $z = \sqrt{z + 7} + 5$
 $z - 5 = \sqrt{z + 7}$
 $(z - 5)^{2} = (\sqrt{z + 7})^{2}$
 $z^{2} - 10z + 25 = z + 7$
 $z^{2} - 11z + 18 = 0$
 $(z - 2)(z - 9) = 0$
 $z - 2 = 0 \text{ or } z - 9 = 0$
 $3 = 2 \text{ or } 3 = 9$

9 is a solution, and 2 is an extraneous root.

$$2 = (\sqrt{2} + 7 + 5)$$

$$2 = \sqrt{9 + 5}$$

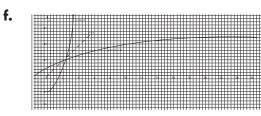

$$2 = 3 + 5$$

$$9 = \sqrt{9 + 7} + 5$$

$$9 = \sqrt{16 + 5}$$

$$9 = 4 + 5$$

5. one solution; x = 1


$$(x - 1) = \frac{x^2}{25} + \frac{24}{5} + 1$$

25 - 25 = x + 10x + 25
0 = x² - 15x + 50
0 + (x - 5)(x - 10)
0 = x - 5 or 0 = x - 10
5 = x or 10 = y

- 7. No; It is not a one-to-one function because each non-zero value of y is paired with one value of x.
- **8. a.** The domain is $x \ge -2$.

b. The range is
$$y \ge 0$$
.

c.
$$f^{-1}(x) = x^2 - 2$$

- **d.** $x \ge 0$
- **e.** $f^{-1}(x) \ge -2$

Investigating Gravity

<u>Student Investigation</u>

- 1. The rock is 192 feet above the ground. $t = \sqrt{16 - \frac{1}{16}d}$ $2 = \sqrt{16 - \frac{1}{16}d}$ $(2)^2 = \sqrt{16 - \frac{1}{16}d^2}$ $4 = 16 - \frac{1}{16}d$ $-12 = -\frac{1}{16}d$ 192 = d
- **2.** No. After 3 seconds the rock is 112 feet above the ground. Since the bird is flying at a height of 120 feet, it will be above the rock.

3.
4.
$$0 \ge d \ge 256$$

5. 2.8 seconds
 $d = \frac{256}{2} = 128$

$$t = \sqrt{16 - \frac{1}{16}} (128)$$
$$= \sqrt{16 - \frac{128}{16}}$$

$$= \sqrt{16 - 8}$$

- = $\sqrt{8}$
- **=** 2.82 ...≈ 2.8
- **6.** The rock hits the ground when d = 0:

$$t = \sqrt{16 - \frac{1}{16}} d$$

= $\sqrt{16 - \frac{1}{16}} (0)$
= $\sqrt{16} = 4$

So, the rock hits the ground after 4 seconds.

- **7.** Since the domain of the function is $0 \le s \le 256$, the range of the function is $0 \le t \le 4$.
- 8. Yes. Answers may vary, but students should indicate that the function is a one-to-one function because in this domain, for every value of *d* there is one and only one value for *t*.

4.2 Rational Expressions, Equations & Functions

Rational Operations

Student Logbook

1. rational expression; one

3.
$$\frac{a}{0}$$

- 4. excluded value
- **5.** Yes; the quotient of two rational expressions can be expressed as the product of two rational expressions.

6.
$$\frac{a+c}{b}$$

8. denominator; x

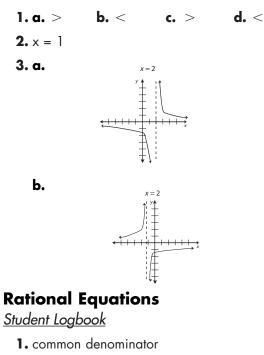
<u>Your Turn</u>

1. a. -2 **b.** 0 **c.** -1 **d.**
$$\pm 2$$

2. a. $b \neq -2$, 0, 2; $\frac{5}{b(b-2)}$
b. $c \neq 0$; $\frac{4c+12}{c}$
c. $d \neq 0$; $\frac{2-5d}{4d^2}$
d. $h \neq 0$, 6; $\frac{h+6}{h(h-6)}$
e. $k \neq 0$, 2; $\frac{5k-14k+2}{k(k-2)}$

Rational Functions

Student Logbook


1. rational equation

- **2.** hyperbola
- 3. vertical axis, horizontal axis
- **4.** $\rightarrow + \infty \rightarrow -\infty$

→ 0⁺ → 0⁻

- 5. asymptote
- 6. discontinuous
- 7. excluded value, vertical asymptote
- 8. horizontally
- 9. asymptotes

<u>Your Turn</u>

- **2.** *x* = 3
- **3.** 3

4. rate, time, work

5.7x

IVERDEEP, Inc.

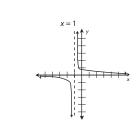
6. $t = \frac{d}{r}$

- 7. extraneous root
- 8. excluded values
- 9. rational equation

Your Turn 1. a. $2k^2 + 8k$ or 2k(k + 4)b. $12w^2 - 36w$ or 12w(w - 3)c. $p^2 - 5p + 6$ or (p - 3)(p - 2)2. p = 2.83. b = 34. $3\frac{1}{3}$ hours 5. a. $\frac{rt}{t - 30}$ b. 8:10am6.3 $\frac{1}{3}$ minutes

Unit Assessment

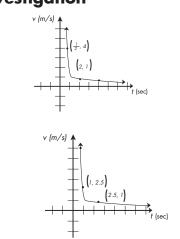
1.a. <i>h</i> ≠ 0	b. <i>g</i> ≠ −3_ c. <i>d</i> ≠ 2
2. a. $\frac{2(w+3)}{w-2}$	b. $\frac{2z^2 + 5z - 3}{4z^2 + 3z^2}$
c. $\frac{4 - u}{36}$	d. $-y^2 - 5y + 42$


3.

x	f (x)
- 4	- 2
- 3	undefined
- 2	2
– 1	1
0	<u>2</u> 3
1	$\frac{2}{4}$ or $\frac{1}{2}$
2	$\frac{2}{5}$
3	$\frac{2}{6}$ or $\frac{1}{3}$
4	$\frac{2}{7}$

4. a.

b.



5. $\frac{t}{6} + \frac{t}{h} = 1$, so if t = 4, h = 12 hours

b. 18 mph **a.** 1.5 hours **6. a.** 5 miles Unit Investigation

1.

- 2. It decreases.
- 3. It decreases.
- **4.** $\frac{1}{2}$ swing per second
- **5.** $\frac{1}{4}$ seconds
- 6. The graph is the part of the hyperbola in quadrant 1, and translated farther from the y – axis than the other 2 graphs
- 7. Increasing the wavelength of a wave causes the period of a wave to increase for a given speed.

5.1 Graphical Displays

Stem & Leaf Plots & Box Plots

Student Logbook

- 1. collection; display; analysis
- 2. histogram; intervals
- 3. stem; leaf
- 4. difference
- 5. skewed
- 6. median
- 7. four
- 8. second quartile
- 9. box plot or box-and-whisker plot
- 10. third; first
- **11.** outlier

Your Turn

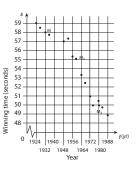
1.	stem	leaf	
	3	3	
	4	2 9	
	6	57	
	10	57	
	28	7	
	29	7	
	53	4	
	Key: 3/3	= 3.3%	
2. a. 3.3	b. 53.4	c. 15.86	d.
3. 4.9; 8.6;	28.7		

4.23.8 5.

+ 40 + 35 45 15 20 25 30 50 55 10

8.6

6.53.4


Scatter Plots & Linear Best-Fit Graphs

Student Logbook

- 1. two
- 2. best-fit
- 3. median-median
- **4.** No; the line M_1M_3 does not represent the data in the center group because most of the data points in the center group lie below the line $M_1 M_3$
- **5.** parallel; $\frac{1}{3}$; $\frac{2}{3}$
- 6. trend
- 7. predictions

Your Turn

1.

2.
$$M_1 = (1932, 58.2)$$

 $M_2 = (1960, 55.2)$
 $M_3 = (1980, 49.99)$
3. a. $y = -0.171t + 388.57$
b. $y = -0.171t + 390.36$
c. $y = -0.171t + 389.167$
4. $s = 48.535$

Unit Assessment

1.	stem	leaf 2 5 = 25mph
	2	5
	3	022
	4	0235
	5	0
	7	0

a. 40.9mph

b. 70mph

- **c.** 41
- **d.** Yes; because the mean is nearly equal to the median.

2. a. 32, 41, 45

b. 13

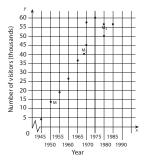
- c. The interquartile range shows that approximately 50% of the animals listed in the table have speeds between 32mph and 45mph.
- 3. a. one-dimensional
 - **b.** one-dimensional
 - c. two-dimensional
- **4. a.** M₁ = (1937.5, 64.55) M₂ = (1960, 73.1), M₃ = (1982.5, 77.8)
 - **b.** m = 0.294
 - **c.** y = 0.294x 504.43
 - d. 82.1 years

Unit Investigation

 A box plot is te best way to display the desired information. The range of years that the middle 50% of the parks have been established is the interquartile range. To find this range, each quartile must be found.

$$Q_1 = \frac{28+35}{2} = 31.5$$
$$Q_2 = \frac{70+75}{2} = 72.5$$
$$Q_3 = \frac{80+84}{2} = 82.0$$

The interquartile range is $Q_3 - Q_1$ or 82.0 - 31.5 = 50.5.


Outliers include Saguaro (5 years) and Yellowstone (127 years).

5.0	31.5	72.5 82	.0 12	7.0
				•
0	5	0	100	150

 A stem-and-leaf plot is the best way to display the desired information. The maximum is 127 years, and the minimum is 5 years. The mean of the data is 61.8. There are 5 values below the mean and 7 values above the mean. Thus, the data are only slightly skewed, and the mean does represent a good measure of central tendency.

stem	leaf	2 8 = 28 years
0	5	
2	88	
3	57	
7	05	
8	004	
9	3	
12	7	

3. A scatter plot is the best way to see if there is a general trend in the data. Accept all reasonable predictions for 2000. Sample: The prediction may not be reasonable because during the last ten years, the number of visitors has fluctuated.

Equation of MM line is y = 1,030.9x - 1,993,229.8

12691–PA Rev March, 2004